File No. S360-36
GY28-6612-4

Program Logic

IBM System/360 Operating System

Fixed-Task Supervisor

Program Number 360S-CI-505

This publication describes the internal logic of the
Primary Control Program (PCP) Supervisor. The PCP
Supervisor is one part of the IBM System/360 Operating
System control program. It performs task management as
follows:

¢ Interruption Supervision

® Task Supervision

- ®* Main Storage Supervision

® Contents Supervision

¢ Program Fetch

® Overlay Supervision

¢ Time Supervision

¢ System Environment Recording

¢ Checkpoint/Restart

It is intended for persons involved in program
maintenance, or system programmers who are altering the

program design; it is not needed for normal use or
operation of the program described.

Fifth Edition (November 1968)

This edition corresponds to Release 17 of the Operat-
ing System. It is a major revision of, and obsoletes,
Y28-6612-3 and Technical Newsletter Y27-7172.

The following chapters should be reviewed completely:

Chapter 3 - Main Storage Hierarchy Support for IBM
2361 Models 1 and 2 has been added,

Chapter 8 - The chapter has been rewritten and
includes SER improvements,

Chapter 9 and Appendix G - New pages describing
Checkpoint/Restart

Other changes to the text are indicated by a vertical
line to the left of the change; changed or added
illustrations are denoted by the symbol (e) to the
left of the cagtion. These changes include:

e Multivolume, Multiextent Link Library

¢ Blocked PROCLIB/PARMLIB

e STAE

¢ ENQ, DEQ, and Validity Check Routine Charts

Significant changes or additions to the specifications
contained in this publication are continually being
made. When using this publication in connection with
the operation of IBM equipment, check the latest SRL
Newsletter for revisions or contact the local IBM
branch office.

This publication was prepared for production using an IBM computer to
update the text and to control the page and line format. Page impres-
sions for photo-offset printing were obtained from an IBM 1403 Printer
using a special print train.

Copies of this and other IBM publications can be obtained through IBM
branch offices.

A form for reader's comments appears at the back of this publication.
Address any additional comments concerning the contents of this publica-
tion to IBM Corporation, Programming Publications, Department 637,
Neighborhood Road, Kingston, New York 12401

© Copyright International Business Machines Corporation 1968

This manual describes the internal logic
of the Primary Control Program (PCP) Super-
visor which is part of the IBM System/360
Operating System control program. The PCP
Supervisor performs task management in op-

erating systems using the Primary Control
Program. The external characteristics of
this supervisor are described in the IBM

Systems Reference Library.

Information in this document is directed
to the customer engineer who maintains and
services the IBM System/360 Computing Sys-
tem and who is responsible for field main-

tenance and updating of the IBM System/360
Operating System. This information may
also be wused by the programming systems

maintenance programmer and the development
programmer who will expand the system.

This publication may be used to locate
those areas of the system to be analyzed ox
modified. The information is presented tc
enable the reader to quickly relate the
task management functions +to the program
listings for those functions. The comments
in the 1listings provide information for
thorough analysis and understanding of the
functions.

PREFACE

PREREQUISITE PUBLICATIONS

Knowledge of the information in the
following publications is required for a
full understanding of this manual.

IBM System/360 Principles of Operaticn,
Form A22-6821

IBM System/360 Operating System: Con-
cepts and Facilities, Form C28-6535

IBM Systemr/360 Operating System: Intro-
duction to Control Program lLogic,
Program Logic Manual, Form Y28-6605

IBM System/360 Operating System: Super-
visor and Data Management Services,
Form C28-66U46

IBM System/360 Operating System:
visor and Data Management Macro
Instructions, Form C28-6647

Suger-—

The following puklications are not
required but may be useful for reference.

IBM System/360 Operating System: TES-
TRAN, Form C28-66u48

IBM System/360 Operating System: Link-
age Editor, Form C28-6538

IBM System/360 Operating System: System

Programmer's Guide, Form C28-6550

IBM System/360 Operating System: System
Generation, Foxrm C28-6554
IBM System/360 Operating System: Ini-

tial Program Loader and Nucleus
Initialization Program, Form
Y28-6661.

INTRODUCTION .« ¢ o o ¢ o o o o o «
Main Storage AXeas . « « o« « o o o
Dynamic Area Usage . « « « « o« &
Task Control Block (TCB)
Request Block (RB) . . .
Request Block Queueing
Active Request Block Queue . .
Loaded Program List
Fixed-Task Supervisor Components .
Interruption Supervision
Task Supervision « « . .
Main Storage Supervision
Contents Supervision
Program Fetch
Overlay Supervision
Time Supervision
System Environment Recording . .
Checkpoint/Restart
Fixed-Task Supervisor Control Flow

CHAPTER 1: INTERRUPTION SUPERVISION
Interruption Supervision Routines .
SVC control Information
Relocation Table« « « . .
SVC Table « o . .
Extended SVC Table (Optlonal) .

Interrurtion Supervision Control Flow

SVC Interruptions « . .
SVC Entry Procedures
SVC Exiting Procedures
Dispatcher . . . « ¢ ¢« « « & &

Resident Type 3 and 4 SVC Routlne

Input/Output Interruptions . . .
Timer/External Interruptions . .
Program Interruptions
Machine Check Interruptions . . .

CHAPTER 2: TASK SUPERVISION
Task supervision Routines
Task Modification
Task Termination . . . « e e e
Task Supervision Control Flow « . e
ATTACH ¢ ¢ ¢ o o o o o o o o o =
EXTRACT &« ¢ ¢ o o o o o o o o o =
SPIE &« ¢ o « o o o o o o s o o
STAE ¢ ¢ o ¢ o o « o o o o o o @
WAIT -- Single Event
WAIT -- Multiple Event
POST & ¢ ¢ o o o o o o o o o o =
ENQ ¢ ¢ ¢ o ¢ o o o o o o « o o @
DEC v« ¢ ¢ o o o o o o o o o o o =
ABTERM « ¢ ¢ ¢ ¢ o ¢ o o o o o &«
ABEND . . . e« e o o o o o o o
Normal End c e e e m e = e o
Abnormal End

Shared Direct Access Device ABEND

CHAPTER 3: MAIN STORAGE SUPERVISION
Main Storage Supervision Routines .

Main Storage Supervision Control Flcw

Boundary BOX « « « o o o o o
Free Area QUEUE . « « « « « o

CONTENTS

Free Area Queue Element . . . « ¢« « « & o
GETMAIN . ¢ o o o o o o o s o s o o s o o o o
FREEMAIN &+ ¢ « o o o o o o o s s o o« o o o =

CHAPTER 4: CONTENTS SUPERVISION . ¢ o« o o o o «

Contents Supervision Routines . . « . <« . « .

Contents Supervision Control Flow . . «
LINK &« o ¢ ¢ o o o o o o o s o o o o =
LOBD 4 ¢ ¢ o o o o o o o o« o o o« o o @
XCTL o o o o o o o o o o o o o o o s o o o =
IDENTIFY ¢ o o o o o o o o o o o o o @
DELETE ¢ ¢ ¢ ¢ o o o o o o o o o o s o o o @
SYNCH ¢ o ¢ ¢ o o o o o o o o o o o« o o o o =
FINCH ¢ ¢ o ¢ o o o o o o o o o o o o o o o o

CHAPTER 5: PROGRAM FETCH . ¢ ¢ ¢ o o o o o « «
Program Fetch Functions . « ¢« « ¢« ¢ ¢ o o o o &
Program Fetch Control Flow .« « ¢ ¢ ¢ ¢ « o o &
Initialization .« ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o
Loading e o o o e o s e e e o s o @
Overlay Modules e o o e e o o o e o o o o o
End-of-Extent Appendage « .« « ¢ ¢ + o o o .
Input/Output Errors . . . e o e o s e o
Relocation (Adjusting Address Constants) . .
Termination . ¢ ¢ o o ¢ ¢ ¢ ¢« o o o o o o o @

CHAPTER 6: OVERLAY SUPERVISION . . < « o« « « «
Takles Used by Overlay Supervision
Use of Segment Table . . . ¢« ¢« ¢ ¢ ¢ ¢ o« o &
Use of Entry Tables ¢ ¢ ¢ ¢ ¢ o « o &
Branching to a Segment Not in Main Storage
Branching to a Segment in Main Storage . .
Overlay Supervision Routines . . « « « « « . .
Overlay Supervision Control Flow
Initialization .« ¢ ¢ ¢ ¢ ¢« ¢« ¢ o o o e o o
Updating Tables « . ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢« o o o « &
Segment Loading « « « ¢ ¢ ¢ ¢ ¢ e o o o o o o
Termination . . ¢« ¢ ¢ ¢ ¢« ¢ ¢ ¢ @ ¢ 4 e e . .

CHAPTER 7: TIME SUPERVISION (OPTIONAL) o o o @
Time Supervision Routines <« . <« . « . «
The Timing Algorithm . . « . & « ¢ o o o o o« &
Time Supervision Control Flow . « « « « « « o« .
STIMER ¢ ¢ ¢ o o o e o o o o o « o a o o o =
TIME « ¢ ¢ o o o o o o o o o o o o o o o o =
TTIMER o« v o o o o o o o o o a o « o o o o =
Timer SLIH ¢ o ¢ o o o o o o o o o o o o« o «
Cueueing Subroutine . . « ¢« . < . ¢ ¢ . . .
Dequeueing Subroutine

CHAPTER 8: SYSTEM ENVIRONMENT RECORDING
Systems Without System Environment Recording
Entry to System Environment Recording

SER ROUtINES + ¢ 4 v v ¢ ¢ 4 ¢ o o o o o o o &
SERO ¢« ¢ ¢ ¢ e o o o o o o o o o o o s o o o

Resident Module —— IFBSR000
Link Library Module -- IFBSROXX . « « « « «
SERL &« ¢ 4 ¢ v 4« o 4 o o o o s o o« o o o o =
Environment Recording Area . .« « « « o o o« o

CHAPTER 9: CHECKPOINT/RESTART . « « « « « « «
CHECKPOINT (SVC 63) o o o

Initialization Modules (IGCOOOGC, I1G6C0106C, IGC0206C)

CANCEL Processing © e e e e e e o =
Check I/0 Module (IGCOSO6C) e e e e e e e e s
Preserve Modules (IGCOAQ06C, IGCODO6C)
Checkmain Module (IGCOF06C) . . . o« o o « «
Resume 1/0 Module (IGCONO6C) .+ . .o o o o« « «

Exit Module (IGCOQO6C) . . ¢ « ¢ o o o o o o o o @
Message Module (IGCOSO06C) « « ¢ o o o o o o o o o =
RESTART (SVC 52) « o e e « e e o e o e e o o

Initialization Modules (IGCOOOSB IGC0105B)
Rermain Module (IGCO505B) . « « ¢ ¢ ¢ o o« « .

Job File Control Block Processing Modules (IGCOGOSB,
Mount/Verify Modules (IGCOKO05B, IGCOMO5B)
Non-Direct Access Processor Module (IGCOLO5B) . . .
Position I/0 Modules (IGCONO5B, IGC0QO05B, IGCOPOS5SB,
Final Processing NModule (IGCOTO5B) . &« ¢ o « o« « &
Exit Module (IGCOVOS5SB) e o o o e o o o o o o o o o

CHARTS =« o ¢ ¢ o « o o o o o o o @ o s o o o s o o =

APPENDIX A: INITIAL PROGRAM LOADER (IPL) e o o o o e
IPL Organization <« ¢ o o o o o o o o o o o o o o o
IPL Control Information . o« « ¢« ¢ « o o o « o o o o &
IPL Tables .« o ¢ o o o o o o o o o o o o o o o« o
IPL CONtXOl FIOW =« 2 « o o o o o o o o o o o o o o @
Nucleus SelecCtion .« « « « o « o o o o o o o o o o =
Hardware Initialization « « ¢« ¢ ¢ o ¢ ¢ o o o o o @
Nucleus LOCation . o« o o« o o o o o o o o o o o o «
Control Section Data Organization . . « « .« « o« . .
IPL Relocation =« ¢« o« « o o o o o o o o « o o o« o
Nucleus LOoad « o o o o o o o o s o o o o o o o o
RLD Relccation =« o o o o o o o a o o o « o o o o =
CommOnN I/0 ¢ o o o o o o o o o s o o o o o o o o =

APPENDIX B: NUCLEUS INITIALIZATION PROGRAM (NIP) . .

NIP FUNCLIONS « o o« o o o o o o « o a s o o o o o o «
CVT Initialization =« ¢ ¢ o ¢ ¢ ¢ ¢ o o « « « o o« &
Dynamic Area Initialization . . . « o ¢ ¢ « o « o &
Boundary Box Initializaticn <«
Free Area Queue Element Initialization . . .

IGCO0I05B) .

IGCOROSB) . .

SYS1.SVCLIB, SY¥S1.LINKLIB, and SYS1l.LOGREC DEB Inltlallzatlon . .

SVC Table Extension (TTR Table) Initialization . .
Protection Key Initialization «
Timer Initialization « o
Building a Resident Directory for SYSl LINKLIB .« .
Resident Access Method (RAM) Initialization
Resident Type 3 And 4 SVC Routine Initialization .
Resident Job Queue Initialization . . « « .« « « . .

APPENDIX C: RESIDENT SUPERVISOR MODULES

APPENDIX D: PROGRAM FETCH RECORD FORMATS

control Record - (Load Module) e e s e e e o s s o o @
Relocation Dictionary Record - (Load Nodule) .« . e e e e e @
Control and Relocation Dictionary Record - (Load Module) o« e e e
Partitioned Organization Directory Record - (as Received from BLDL)

Module Attributes ¢ ¢ 4 4 4 e 4 e e e 4

APPENDIX E: ENQ/DEQ QUEUE CONTROL BIOCK (QCB) FORMATS
Major Queue Control Block (Major QCB) . . «
Minor Queue Control Block (Minor QCB) . « « « o« « o« =

APPENDIX F: ENTRY AND SEGMENT TABLE FORMATS
Entry Table (ENTAB) . ¢ o ¢ o o o o o o o o o o o« o« &
Segment Takle (SEGTAB) . . ¢ ¢ ¢ o o o o o o o o « =

APPENDIX G: SERO AND SER1 RECORD ENTRY FORMATS . . .

APPENDIX H: CHECKPOINT/RESTART RECCRD FORMATS AND MODULE LIST . . .

Record Formats e e e e o s e o o o =
CHECKPOINT Header Record (CHR) e o e e 4 e o o o
Core Image Record (CIR) o ¢ ¢ o v o« o o o o o « o «
Data Set Descriptor Records . . . « « « « « o « o« .

TYPE 1 DSDR v v o o o o o o o o o o o o o o o« o o

.106

-109
.109
.109
.109
.110
.110

Type 2 DSDR « « « « «

TYpe 3 DSDR « « o o « o o« = « o « =
Special Identifiers
Supervisor Record (SUR)
CHECKPOINT/RESTART SVC Module List . .
Checkpoint/Restart Register Usage Takle

INDEX ¢ ¢ ¢ o « o o o o o o o o s o o =

¢ o & o s

e & s & o 8

e o & & o &

o o o o o o

e & o s & &

e 0 & o 8 0

e & s o ¢ o

.110
.110
.110
.111
.112
.113

114

FIGURES

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Fiqure
Figure
Figure
Figure
Figure

Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

CHARTS

Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart

15.
16.

17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.

01.
02.
03.
ou.
05.
06.
07.
08.
09.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

Transferring Control Using Request Blocks
Request Block QuUeues .« « « o o « o o
Relocation Table « . .

SVC Table .« . . e e e e e . .
Extended SVC Table (0pt10nal) . .
IRB Format Options -
Program Interruption Element (PIE) Format

e o o 0

STAE Control Block (SCB) Format
ENQ Parameter LisSt . « ¢ ¢ ¢ o o o o« «
Main Storage Organization e e e e e e
Program Fetch Work Area e e e e e e e
Note List (in Main Storage) o o o .
Blocks and Tables Used by Program Fetch - .

Typical Load Module (Logical Format on Dlrect-Access
DEVICE) o« o ¢ o o o o o o o o o o o o o o o o s o o =
Conditions Affecting Channel Program Mode « e e e .
Typical Load Module (Physical Format on Direct-Access
DEVICE) v v v o o o o o o o o o o o o o o o o
Single-Region Overlay Structure
Overlay Program Upward Branch e e e e
Branch to Segment not in Main Storage .
Branch to Segment in Main Storage
Chaining of ENTAB Entries Used to Branch to a Segmen

¢ ¢ 8 o o 8 s 8 s
o ¢ o 6 8 ¢ & s s

¢ o e
¢ & & 8 s s 0 o s s 8

.
-
-

Timer Queue PR e . .
Timer Queue Element (96 Bytes) .
System Environment Recording . .
Problem Program Checkpoints .« .
CHECKPOINT Routine Control Flow

RESTART Routine Control Flow . . « « « « ¢ « o
Storage Layout Before and After IPL Relocation
Storage Layout at End of IPL Program Execution . . .
IPL Error Types e e e o e o o s s e e s e e o @
BOUNdary BOX « o o o o o o o o o o o o o o o o @
Dynamic Area and Boundary Box Initialization . .

e o
-
-
-

-
-
-
-
-

e« o 0
e s o 2 e

e o s o o ¢ o (e o s 0

Free Area Queue Element (FQE) Built by NIP . .
DEB Initialization . « ¢ ¢ o« o o o« o o o o o &

. e 8 & @
.

Fixed-Task Supervisor Control Flow . .
Interruption Supervision Control Flow
Task Supervision Control Flow
ENQ/RESERVE Service Routine (IEAAENQO)
DEQ Service Routine (IEAADEQO)
Validity Check Subroutine (IEAOVLOO) .
Main Storage Supervision Control Flow
Contents Supervision Control Flow . .
Program Fetch Control Flow
PCI and Channel End Appendages
Overlay Supervision Control Flow . . .
Time Supervision Control Flow
SERO Link Library Module Control Flow
SERO Link Library Module Control Flow
SER1 Control FIOW . ¢ ¢ ¢ o o o o « &
SER1 Control Flow « e e e
CHECKPOINT (SVC 63) Control Flow « o .
RESTART (SVC 52) Control Flow
Initial Program Loader Control Flow
Nucleus Initialization Program Control Flow .

¢ s & o 4 & & 8 4 e
" 4 8 o ¢ s & s 0

e & & o s s & 8 4 0
T T S)

e & s o o s s s s 0
s ¢ 4 8 & s s & & 0

* & o o 8 s 0

LR I} .
« s s e
. .
. . e
. .
. 8
TR
.

e 6 o 8 o s 6 8 o s e s

s 5 & & 8 0 o & 8 & o s s s @

e ¢ & o o o s s s o 0

s s s s @

The fixed-task supervisor is a group of
service routines that control the use of
the central processing unit (CPU) and main
storage of IBM System/360. This supervi-
sion, called task management in the IBM
System Reference Library, includes super-
vising the interfaces between processing
programs and the primary control rprogram.
The primary control program is made up of
the service routines for task management,
data management, and job management. The
fixed-task supervisor provides the follow-
ing task management functions:

e Overlap of central processing unit
operations with input/output channel
activity.

e Servicing of all hardware interrup-
tions.

e Handling of all supervisor calls

(svCs) .

e Allocation of main storage for programs
and data.

e Dynamic loading of programs not in main
storage. °

e Synchronous overlay supervision.

e Use of the hardware timer (optional).

¢ Recording of machine malfunctions.

® Servicing requests for writing CHECK-
POINT records during the execution of a
program, and restarting programs at

these CHECKPOINTS.

The fixed-task supervisor is part of the

primary control program, which is wused to
process batch jobs sequentially. The pri-
mary control program requires a main
storage capacity of at least 32,768 bytes,

and a minimum machine configuration that
includes direct-access auxiliary storage.

MAIN STORAGE AREAS

In the primary
environment, main storage is
two areas: the fixed or system area and
the dynamic or processing program area.
The fixed area is used for system routines
that perform control functions during the
execution of a processing program. The

divided into

dynamic area is wused for a processing
program and its data, control blocks, and
tables.

control program (PCP) -

INTRODUCTION

The fixed area is divided into the
nucleus and two transient areas. The nu-
cleus contains the more frequently used SVC
routines, the interruption handlers, and
other routines and control information.
The transient areas are two buffers into
which 1less frequently used system routines
are brought from the system residence
volume. The first, called the SVC tran-
sient area, is 1024 bytes long and is used
for SVC routines. The second, called the
I/0 supervisor transient area, is 1024
bytes long and is used for the input/output
supervisor's error handling routines.

DYNAMIC AREA USAGE

A processing program is loaded into the
lower section of the dynamic area. Rou-
tines that the processing program has
brought into main storage with a LOAD macro
instruction are placed in the upper section
of the dynamic area, the section with the
numerically-greater main storage addresses.
These routines, which may be system or user
routines, remain in main storage for the
duration of the job-step that loaded them,
unless they are removed by using the DELETE
macro instruction.

When the processing program issues a
LINK macro instruction, the fixed-task
supervisor loads the requested routine into
main storage following the processing pro-
gram. If this routine LINKs to ancther
routine, the second routine follows the
first in main storage. When one of these
routines issues a RETURN macro instruction,
control returns to the program or routine
that issued the LINK. For example, if
routine A LINKs to routine B, routine B
finishes and returns to A, and routine A
then LINKs to routine C, the fixed-task
supervisor overlays routine B with routine
C.

When a routine issues an XCTL macro
instruction, the main storage area occugied
by the routine is freed (if the routine was
not originally brought into main storage
with a LOAD macro instruction). If the
requested routine had not been loaded into
main storage previously, it is brought into
the lower section of the dynamic area.

Main Storage may ke expanded by includ-
ing IBM 2361 Core Storage in the system.
Main Storage Hierarchy Support for IBM 2361
Models 1 and 2 permits selective access to
either the rrocessor storage portion
(hierarchy 0) or 1IBM 2361 Core Storage

Introduction 11

portion (hierarchy 1) of main storage. A
hierarchy parameter (HIARCHY=) in the LINK,
LOAD, XCTL, ATTACH, GETMAIN, GETPOOL, and
DCB macro instructions permits specifica-
tion of either hierarchy as desired. If
IBM 2361 Core Storage is not included in
the system, requests for storage within
hierarchy 1 are obtained from processor
storage.

| TASK CONTROL BLOCK (TCB)

Processing programs that operate in a
fixed-task environment do so as part of a

task, a unit of work for the central
processing unit (CPU). In PCP there is one
task control block (TCB). It is wused to

record information about the user's pro-
gram. The TCB is initialized by the Nu-
cleus Initialization Program (NIP) and is
used sequentially by each task performed
within the dynamic area. (NIP is described
in Appendix B.)

The TCB. is 172 bytes
additional 32 bytes preceding the first
byte (when required) as a floating point
register save area. The format and
contents of the TCB are given in the
publication IBM System/360 Operating Sys-
tem: System Control Blocks, Form C28-6628.

long, with an

REQUEST BLOCK (RB)

There may be any number of programs
(logically distinct sections of code) ready
to be executed. Control passes from one
program to another through a branch, LINK,
XCTL, ATTACH, or as the result of an
interruption for which an asynchronous exit
has been specified. Every transfer of
control other than a direct branch is
handled by the supervisor.

Handling such transfers requires the
maintenance of information allowing the
supervisor to return control through the
same sequence of programs but in reverse
order. For example, if A links to B and B
links to C, the supervisor must have the
necessary information to return control to
B when C completes operation and then to A
when B completes operation. The request
block contains this information.

Request blocks are chained together to
indicate how control should be transferred.
Each request block (RB) addresses the RB of
the program which will receive control when
the prcgram governed by the first RB com-
pletes operation. The last element in the
chain is the RB for the first progranr
executed under the task control block
(TCB) . This RB addresses the TCB instead
of another RB.

12

In the preceding example, the RB for
program C addresses the RB for program B.
This RB addresses the RB for program A,
which points to the TCB. The TCB itself
addresses the RB most recently added to the
queue, in this case the RB for program C.
See Figure 1.

TCB

—————

A
-

|

|

\
e e e e
n....T-—-l

A\
- e e
—

__..._.___._
|

b4

Figure 1. Transferring Control Using

Request Blocks

Normally, one request block precedes the
processing program and each requested rou-
tine. Request blocks are queued from the
task control block (TCB). Request blocks
for active routines are queued c¢n the
active request block queue; those for
loaded routines are queued on the 1loaded
program list.

The first request block (RB) is placed
on the active request block queue by NIP.
An RB for job management is substituted for
this first RB when NIP transfers control,
via XCTL, to job management.

In addition to addressing another RB or
the TCB, each RB contains the identifica-
tion of the requested program, the entry
point, the interrupted program status word
(resume PSW), the size of the request
block, the size of the program, and the
request block type.

There are six types of request blocks:

e Program Request Block (PRB) -- used to
control programs not previously loaded.

e Interruption Request Block (IRB)--used
to control system cr user asynchrcnous
exit routines.

* System Interruption Request Block
(SIRB) -- used to control I/O super-
visor error routines. Only one SIRB
can exist at a given time.

e Supervisor Request Block (SVRB) -- used
to control type 2 (resident), tyre 3
(non-resident, unimodular), and type 4
(non-resident, multimodular) SVC rou-
tines. Types 2, 3, and 4 SVCs may be
enabled.

=T

e Loaded Program Request Block (LPRB) --
used to control programs that are
LOADed and are ATTACHed, LINKed, or
XCTLed; also used to control sections
of programs that are specified by the
IDENTIFY macro instruction and are

ATTACHed.

e Loaded Request Block (LRB) —- shortened
form of LPRB, used to control load
modules that have the "only-loadakle"”
attribute. (It is invalid to ATTACH,
LINK, or XCTL to these load modules.)

The standard formats for all request
blocks and a description of their contents
are given in the publication IBM System/360
Operating System: System Control Blocks,

Form C28-6628.

REQUEST BLOCK QUEUEING

The TCB addresses two request block (RB)
queues: the active request block queue and
the locaded program list (See Figure 2).

TCB

Figure 2. Request Block Queues

r 1

| I

| | Active Request Block Queue

| I+ 1
| | |
| I |
| TCBRBP } ———Ppp—————— 1 |
	I				
I	XRBLNK f——py————— 1				
				I r—————= 1	
I I I	XRBLNK f——#y——————7 r——P XRBSVC	———			
	Lo 4		r—{XRBPRE	¢,	
	SIRB			XRBLNK p—4—+-t —————- 111	
	b 4 [Pl				
	SVRB I				XRBLNK}—4—tPppr——-—- 1
	Lt Sl I O P				
	IRB P				XRBLNK}-——-4
I | I e N B |

| | | | LPRB | | | |

| | I [4

| | Il | | PRB

| | I I

| | Il I

| | 11 |

| | Il (.

| | I Il

| | I I

| | Loaded Program List 11 | |

| | Il I

| | Il Il

| I 1T 1 e || I

| TCBLLS }———-9] XRBSUC }——$| XRBSUC }——$| XRBSUC } -1 | | L$|XRBSUC|=0

| |¢———{ XRBPRE {¢--{ XRBPRE |{¢——{ XRBPRE |¢---1 L-——{XRBPRE|

| Il o 1 ¢ 1 p————- 1

| | | I | | | | |

| 1 | I | | | | |

| I I | XRBQ|=0 | XRBC}—q | | I |

! | | | I | | |

l l I L J L J ‘ L J | J

| | | LPRB LPRB | LRB LRB

| | | (Minor) |

| [|

‘ I L J

| |

| |

I |

| |

| |

L -1

Introduction 13

Active Request Block Queue

The active request block queue is made
up of PRBs, IRBs, SVRBs, LPRBs, and the
SIRB. There is one request block (RB) for
each program to be executed. TCB field
TCBRBP addresses the first (current) RB on
the gqueue. Field XRBLNK of each RB on the
queue addresses the next RB on the queue.
XRBLNK of the 1last RB on the queue
addresses the TCB.

Loaded Program List

The loaded program 1list contains LRBs
and LPRBs in a two-way chain. Each loaded
program is represented in this 1list. The
TCB, through the pointer named TCBLLS,
points to the first RB on the loaded
program 1list. The RBs on the list are
chained through the XRBSUC and XRBPRE
fields. XRBPRE for the first RB in the
queue points to the TCB. XRBSUC for the
last RB on the list contains zero.

An LPRB may also appear on the active
request block queue. If it does, it is
maintained on both queues simultaneously by
two different sets of pointers.

FIXED-TASK SUPERVISOR COMPONENTS

The fixed-task supervisor is composed of

the following major components, each of
which is a functional grouping of super-
visor service routines or subroutines:

interruption supervision, task supervision,
main storage supervision, contents supervi-
sion, program fetch, overlay supervision,
time supervision, system environment re-
cording, and checkpoint/restart.

INTERRUPTION SUPERVISION

The interruption supervision service
routines handle all interruptions on a
first or introductory level. To do this
they:

e Save information about the environment
(machine status) at the time of the
interruption so that the environment
may be recreated later.

e Determine what action needs to be taken
and set up the routines needed.

o Route control to the needed routines.

e Return to the interrupted environment.

14

TASK SUPERVISION

The task supervision service routines
maintain control information. They main-
tain the current status of prograr and

interruption request klocks, task control
blocks, and event control blocks. The task

supervision service routines are responsi-
ble for modifying and terminating task
operations.

MAIN STORAGE SUPERVISION

The main storage supervision sexvice
routines establish the availakility of main
storage and dynamically allocate that
storage to a task on request, within the
dynamic area.

CONTENTS SUPERVISION

The contents supervision service rou-

tines maintain a record of the identity of
all programs and routines together with
their status and characteristics, within

the dynamic area. The contents supervision
service routines initiate program fetch for
the dynamic loading of programs, and wain-
tain the active RB queue to represent
requests for the use of prograwms.

PROGRAM FETCH

The program fetch service routine is a
relocating 1loader which brings a program
module processed by the linkage editcr from
secondary storage into main storage.

OVERLAY SUPERVISION

The overlay supervision service routines
monitor the flow of control between seg-
ments of a program operating in an overlay
structure preestablished by the user
through 1linkage editor. These routines
ensure that all dependent program segments
are brought into main storage by prcgram
fetch before the actual branch is executed.

TIME SUPERVISION

The time supervision service routines
set and maintain a clock, and honor re-
quests for time intervals and time-of-day.

SYSTEM ENVIRONMENT RECORDING
The system environment recording service

routines are optional control program rou-
tines that record and in some cases attempt

to minimize the effects of machine malfunc-
tions in System/360 Models 40, 50, 65, and
75.

CHECKPOINT/RESTART

The CHECKPOINT service routine writes a
copy of the requesting task's main storage
area and environment. The RESTART service
routine uses this copy to re-create, at a
later time, the conditions which existed
when the CHECKPOINT copy was written. The
RESTART service routine then gives the task
control. Checkpoint/Restart information is
applicable only to PCP.

FIXED-TASK SUPERVISOR CONTROL FLOW

As shown 1in Chart 01, flow in the
fixed-task supervisor is flow of inter-
ruption supervision, with alternate supple-
mentary flow paths through other fixed-task

supervisor components and other control
program service routines -- those of data

management, input/output supervision, job
management, linkage editing, and test
translation.

All interruptions in the central pro-
cessing unit, in the channels, or in the
devices attached to the channels, that
affect control program processing, are
placed before the interruption supervision
service routines along with information
identifying the cause of the interruption.
These interruption handlers pass control to
those parts of the control program that
service interruptions.

When the interruption has been serviced,
the interruption supervision service rou-
tines again receive control and return the
central processing unit (CPU) to the state
in which it was operating before the inter-
ruption occurred.

Introduction 15

CHAPTER 1:

INTERRUPTION SUPERVISION

Interruption supervision provides first
level interruption handling: that is, con-
trol passes from the processing program to

the control program and back again. Inter-
ruption supervision service routines:

e Save the interrupted environment.

e Insulate interruption routines from

each other.

e Pass control to routines required to
service the interruption.

e Return control to the interrupted pro-
gram when servicing is completed.

In addition, interruption supervision
provides, through the SVC handlers, all
interface orerations associated with the
four types of supervisor call routines:

e Type 1 SVC routines.
resident and are

These are always
executed disabled.

They wusually return control to the
interrupted program without entering
the dispatcher. A type 1 SVC routine

can use the services of another type 1
SVC routine through a direct branch.
It cannot use the services of any other
type routine because it cannot issue
SVC instructions (i.e. it cannot cause
interruptions). Examples are GETMAIN,
FREEMAIN, EXCP, WAIT, and EXIT.

e Type 2 SVC
resident; but

routines. These are also

they are partially
enabled, or they call on other than
type 1 SVC routines. These routines
are completely reenterable. Examples
are LINK, LOAD, and XCTL.

e Type 3 SVC routines.
type 2 routines except that they are
not resident. They are each brought
into the 1024-byte SVC transient area.
Examples are IDENTIFY, WTO, and LOCATE.

These are 1like

e Type 4 SVC routines. These are "multi-
phase"™ type 3 routines. That is, they
are too large to be brought into the
transient area at one time and must be
brought in in phases, each later phase
overlaying an earlier one. Transfer of
control from one phase to another is
through XCTL. Examples are OPEN,
CLOSE, and EOV.

Note: Type 3 and 4 SVC routines can be
made resident. See "Resident Type 3
and 4 SVC Routine Option."

16

To achieve a high response time for
input/output interruptions, interrugtion
supervision has a software-implemented dis-
abling subroutine called the pseudo disable
routine. This routine allows input/output
interruptions to be processed without the
requesting routine 1losing control -- the
routine which was interrupted regains con-
trol as soon as the input/output supervisor

has processed the interruption. Requesting
routines include those system routines,
such as the job management write-to-

operator routine, that must operate enakled
yet not lose control to another routine.

INTERRUPTION SUPERVISION ROUTINES

Interruption supervision includes the

following service routines:

e SVC FLIH - The supervisor call first
level interruption handler does the
introductory work following an SVC in-
terruption, and prepares for the execu-
tion of type 1 SVCs.

e SVC SLIH - The supervisor call second
level interruption handler monitors the
SVC transient area and prepares for the
execution of types 2, 3, and 4 SVCs.

e Type 1 Exit - This routine is the
exiting procedure for type 1 SVCs.

e EXIT - This SVC routine is the exiting
procedure for types 2, 3, and 4 SVCs.

e Dispatcher - This routine passes con-
trol from routine to routine, whether
system routine or processing program
routine. Through two subroutines, the
dispatcher sets up the mechanisrk to
handle asynchronous exits and monitors
the I/0 supervisor transient area.

e I/0 FLIH - The input/output first level
interruption handler does the introduc-

tory work following an input/output
interruption and the clean-up work
after the input/output supervisor

finishes second level handling.
e T/E FLIH - The timer/external first

level interruption handler does the
introductory work following any timer/
external interruption and the clean-up
work after the second level handling is
completed.

P FLIH - The program first level inter-
ruption handler monitors all program
interruptions.

e PROLOG - This routine is used by P FLIH
to set up input parameters to the
ABTERM service routine of task supervi-
sion.

e MC_ FLIH - A machine check interruption
causes control to be given to a system
environment recording routine if one of
these is included in the system.
Otherwise, the system is placed in the
wait state.

e Validity Check - This routine is used
as a common subroutine by other systen
routines, such as program fetch. The
validity check routine prevents program
interruptions caused by invalid
addresses (those pointing beyond the
boundaries of main storage) passed to
the control program by a processing
program. In installations that have
selected the hardware protection
option, this routine also checks for a
mismatch between the storage key of the
addressed block and the protection key
of the TCB.

SVC CONTROL INFORMATION

The supervisor maintains SVC control
information in the SVC table and the relo-
cation table. These tables are in a module
called IEASVCO00, which is assembled during
system generatiocn.

RELOCATION TABLE

The relocation table is used to relate
the SVC code number with its corresponding
entry in the SVC table. The relocation
table consists of a numkber of 1 byte
entries (each of which is addressed through
indexing based on the SVC code numbers).
Each entry contains a number. If it is
zero, then the associated SVC code is
invalid. If it 1is non-zero, then the
number is an index to an entry in the SVC
table.

The relocation table is divided into two
sections. The first section contains
entries for IBM codes (that is, codes
assigned to IBM-provided SVC routines).
There 1is one entry for each code number
from 0 to (but not including) "High IBM
Code", whether or not the SVC code is in
use in the system.

The second section contains entries for
user codes, with one entry for each code
number from 255 to (but not including) "Low

User Code", whether or not the SVC ccde is
in use in the system.

The size of the relocation takle is
variakle; its maximum size is 256 bytes.
Both the size and the contents of the table
are determined during system generation
(based on the SVC routines included in the
system). The relocation table format is
shown in Figure 3.

| 1 byte |

S —— 1

| |- ------------- 0
pomm 1

| |

e :

| |

m— 1

| | Each entry in this

[o’ section corresponds to

| | an IBM SVC code numker
— 1

| | (Ranging upward

I —— 4 from 0 to highest)

| |

m— 1

| |

e 1

| |

p—————— .| Value in each entry

| | in both sections points
- el tc an SVC table entry

| |

— .

| | - =-=-=-=-= === High IBM Code
pommm— 1

| |- ---=-=-=-=-"=-=-=-=-- - 255
b e 4 .

| | Each entry in this
| section corresponds to a
| | user SVC code numker
p--—-—-{

| | (Ranging dcwnward
p————- 4 from 255 to lowest)

| |

e 1

| |

— .

| | === ===-==- = Low User Code
| I, 1

Figure 3. Relocation Table

SVC TABLE

The SVC table is divided into two sec-
tions. The first section contains a 3-kyte
entry for each type 1 or type 2 SVC
routine. The second section contains a

1-kyte entry for each type 3 or type 4 SVC
routine.
Chapter 1: Interruption Supervision 17

Each 3-byte entry contains a 24-kit main
storage address with the three 1low-order
bits defined as zero. This address is the
address of an SVC routine. The three
low-order bits of this address are used to
indicate the number of double-words
required for the extended save area (ESA)

in the request block (RB). Each 1-byte
entry contains the extended save area
informaticn in the last three bits. If the

three bits are
indicated. The
Figure 4.

zeros, a type 1 SVC is
SVC table 1is shown in

Bits:
- 21-—- 1-3-1
~ - T 1
| Address | Esa|
— +——1
| I |
k- —
| | I
L—- L]

3-byte entries for type 1 and 2 SVC
tines

rou-

Bits:
|-=5--1-3-|
r———=- T-—"1
| 0 |ESRA]
|
| | I
- +———1
| | i
L 1___1

1-byte entries for type 3 and 4 SVC rou-

tines

Figure 4. SVC Table

Extended SVC Takle (Optional)

The SVC takle wmay be extended during
system generation so that each entry is
four bytes long. The entry for a type 1 or
2 SVC routine contains a high order kyte of
zeros and a 24-bit address which includes
the ESA information. Each entry for a type
3 or 4 8SVC routine contains the track
address (TT) of the transient SVC routine
in the first field, the record number (R)
on the track in the second field, the
length of the first text record in the
third field, and the size of the extended
save area in the last field. The extended
SVC table is shown in Figure 5.

Note: This option must be selected if the
resident type 3 and 4 SVC routine option is
chosen.

18

Bits:
I 8 | 21 -3~
r T T 1
| 00 | Address | ESa|
L 4 4 J
1} T T 1
| I [
L 4 4 1
r 1] T L}
| | [
L L 1 J

4-byte entries for type 1 and 2 SVC rou-

tines

Bits:
| 10 | 8 | 11 1-3-|
r T T T 1
| T T | R | Length | ESA|
|8 4 iy l d
r T T T |
I I I | I
b 1 1 i J
r 1] T T 1
I I | | |
Lo L L 1 J

4-byte entries for type 3 and 4 SVC rou-

tines

Figure 5. Extended SVC Takle (Optional)

INTERRUPTION SUPERVISION CONTROL FLOW

Interruption supervision
shown in Chart 02, starts with an inter-
rupticn. The five types of interruptions
are SVC, input/output, timer/external, pro-
gram, and machine check.

control flow,

SVC INTERRUPTIONS

When an SVC interruption occurs, there
are two paths to the requested SVC routine.

These paths are descriked under SVC entry
procedures. When the SVC routine com-
rletes, there are two paths of return.

These paths are described under SVC exiting
procedures. The dispatcher is discussed
after the entry and exiting procedures (to
show the flow bLack to the processing
program) .

SVC Entry Procedures

Entry to SVC routines is handled ky the
SVC FLIH and the SVC SLIH. The execution
of any SVC instruction causes the hardware
to give contrcl to the SVC FLIH by loading

a new program status word (PSW) that is
disabled for all maskakle interruptions
except machine check. The SVC instruction

contains an 8-bit code which the SVC FLIH
checks to determine which service routine
is required.

All registers are stored in the SVC save
area. The SVC <code 1is compared to the
largest valid IBM-provided value plus cne.
If the code is equal tc or larger than the

maximum, the code is analyzed to determine

whether the request is for a user-provided
SVC routine. The task is aknormally ter-
minated if the SVC code is not valid. If

the code is a valid IBM code, Dbut 1is not
supported in this system, the SVC instruc-
tion is treated as a no-operation (NOP).

Next, the SVC FLIH determines whether
the requested SVC routine is listed in a
resident SVC table. If listed, the address

of the SVC routine is wused to enter the
routine.
When the request 1is for other than a

type 1 SVC routine, the FLIH branches to
the SVC SLIH after moving the original
register contents to the TCB. The SLIH
creates SVRBs for types 2, 3, and 4 SVC
routines. If the routine is a type 2 SVC,
the SLIH passes control to the routine
directly. If the routine is a type 3 or
type 4, then the SLIH passes control only
after the routine has been rplaced in the
transient area via the FINCH routine
(described in Chapter 4).

The SVC SLIH first separates type 2
requests from types 3 and 4 so that the
SLId's SVRB creation and initialization
subroutine can Lke executed immediately.
For type 3 and 4 requests, the SVC SLIH
initializes and, if necessary, fetches the
required routines.

The SVRB creation and 1initialization
subroutine stores the requestor's PSW in
the current request block and then creates
an SVRE for the called routine. The size
of the SVRB is determined from the three
low-order bits c¢f the SVC Takle entry for
the called routine. (This entry has been
placed in register 6 by the SVC FLIH.) The
three low-order bits of the entry contain a
value between 1 and 7. This value minus
one is equal to the number of double words
required for the request Lklock extended
save area.

After determining the size of the SVRB,
the SVRB creation and initialization sub-
routine clears the three low-order bits of
register 6 and issues a GETMAIN for the
SVRE. The subroutine then initializes the
SVRB and queues it on the active RB queue.

1f the SVC routine is a type 2, regis-
ters 0, 1, and 15 are restored from the
save area of the SVRB, environmental regis-
ters are loaded, and the type 2 SVC routine
is entered.

If the SVC is a type 3 or 4, the SLIH
examines the SVC table, extracts informa-
tion telling the size of the extended save
area needed in the SVRB, and creates and
initializes the SVRB.

If the current transient area occugant
is not the requested routine, the requested
routine must be loaded by FINCH, which is
entered by a BALR. When the loading is
completed, FINCH returns control to the SVC
SLIH.

The separate phases of type 4 SVC rou-
tines bring each successive phase into the
transient area by using XCTL until the
prhases are completed. The final cghase
issues an SVC EXIT instruction.

SVC Exiting Procedures

There are two exiting procedures for SVC
routines -- Type 1 Exit and EXIT. Type 1
SVC routines (with the exception of EXIT)
return to the Type 1 Exit Routine for
handling. Type 1 Exit passes contrcl to
the dispatcher or to the interrupted pro-
gram -- either a processing program cr a
service routine. Types 2, 3, and 4 SVC
routines return to the EXIT Routine. EXIT
dequeues the SVRB from the TCB's active RB
queue and passes control to the dispatcher.

TYPE 1 EXIT: Type 1 SVC routines branch to
the type 1 exit routine when they complete
processing. The type 1 SVC indicatcr is
reset to zero, and registers are reloaded
from the type 1 register save area of the
SVvC FLIH. The first word of the TCB
pointer (IEATCRBP) is compared to zero. If
IEATCRBRP does not equal zero, it means a
task switch has not keen indicated, and the
requestor of the exiting type 1 SVC is
reentered by loading the SVC old PSW. If
IEATCBP equals 2zero, a task switch is
indicated and the SVC old PSW is checked to
determine if the requestor was disabled for
any interrupticns. If it was disabled, the
requestor retains control and is reentered
by loading the SVC o0ld PSW. If the re-
questor was fully enabled, registers are
saved 1in the task control klock, the SVC
0ld PSW is saved in the current RB on the
active request block queue, and the type 1
exit routine branches to the dispatcher.

EXIT: Types 2, 3, and 4 SVC routines, as
well as asynchronous exit routines and
routines entered by supervisor-assisted
linkages, complete Ly using the EXIT rou-

tine directly or indirectly. Using EXIT
directly means issuing an SVC EXIT instruc-
tion. Using EXIT indirectly means issuing
a branch instruction with register 14 as an
operand (or issuing a RETURN macro instruc-
tion which expands to include a branch on
register 14), where register 14 is preset
by the supervisor to point to an SVC EXIT
instruction in the nucleus.

EXIT determines the type of routine that
is exiting, performs the necessary terminal
procedures for the routine, and precares

Chapter 1: Interruption Supervision 19

for return to the routine in control prior
to the exiting routine. 1In addition, EXIT

determines if the routine to receive con-
trol 1is an SVC routine executed in the
transient area. It is possible that the

sequence of events has caused the transient

area to be overlayed since the SVC routine
last had control. In this case, the tran-
sient area refresh subroutine of EXIT is

entered to restore the SVC routine to the

transient area.

EXIT passes control to either the dis-
patcher, a processing program, an asynchro-
nous exit routine, or the task termination
routine. The first and most common place
is the dispatcher. The second, a gprocess-
ing program, is given control when the exit
is from a program interruption routine.
The third, an asynchronous exit routine, is
given control when the exiting routine is
an asynchronous exit routine and there are
additional requests for the routine (RQES)
queued on the IRB under which it is operat-
ing. The fourth, the task termination
routine, is given control when the return-
ing program is the highest control level
for a task.

When entered, EXIT resets the type 1
switch because, although EXIT is entered as
a type 1 SVC routine, it does not return
through the normal type 1 exit. This is
because it is a transitional routine which
passes control from one program to another.

After setting the type 1 switch, EXIT
deterrines if the exiting routine created
any STAE control blocks (SCBs) that were
not cancelled. If the XCTL-option was not
specified for these uncancelled SCBs, EXIT
updates the SCB pointer and frees the main
storage occupied by these SCBs.

EXIT next determines if +the exiting
routine 1is a program interruption routine.
If it is, the address of a rprogram inter-
ruption element (PIE) 1is loaded from TCB
field TCBPIE. The PIE contains the PSW and
the contents of registers 14 through 2 that
were in effect when the prograr interrup-
tion occurred, unless they were modified by
the user's program interruption routine.
Tne right half cf the PSW saved in the PIE
is mcved to the SVC old PSW, registers 14
through 2 are locaded frcm the PIE register
save area, and the SVC old PSW is locaded tc
return control to the processing program.
Unless the user's program interruption rou-
tine modified the values in the PIE or in
registers 3 through 13, the processing
programr regains control at the instruction
following that which caused the program
interrugtion.

If the exiting routine is not a
interruption routine, EXIT:

prograr

20

1. Saves registers 10 through 1 in the
register save area of the TCB,

2. Obtains the address of the RB for the
exiting routine from TCB field TCBRBP,

3. Obtains the address of the RB for the
routine next to receive control from
field XRBLNK of the exiting program's
RB.

EXIT determines if the exiting RB is an
IRB or the single SIRB in the system.
(Both IRBs and the SIRB are discussed under
Dispatcher and Exit Effector.) If it is
either, EXIT determines if the RB has:

e Interruption queue elements (IQEs) with
4-byte link fields.

o IQEs with 2-byte link fields.
e No IQEs.

If the RB has interrupticn queue ele-
ments, the IQE at the top of the RB's XRBQ
queue is removed. If the IQE has a 2-kyte
link field, the IQE is returned to the 1I/0
supervisor to be pglaced on its list of
available queue elerents. (In the 1I/0
supervisor program logic manual, IQEs with
2-byte link fields are called request ele-
ments.) Interruption queue elements with
4-byte link fields are not queued on any
other queue and are effectively discarded
when they are removed from the XRBQ unless
the NEXAVL field of +the IRB exists, in
which case they are returned to this queue.

The RB is checked for more queue ele-
ments. If there are more, and if the new
top IQE has a 2-byte 1link field, the
address of the tor IQE is 1loaded into

registers 1 and O. If the top queue
element has a 4-byte 1link field, register 0
contains the address of the IQE, as kefore,
kut register 1 contains the data fror the
second 4-byte field of the queue element.
In either case, the return address toc be
used by the asynchroncus exit routine is
loaded in register 14, and the entry point
address of the asynchronous exit routine
from the XRBEP field of the RB is lcaded
into register 15 Lkefore +the routine is
entered. The first word of the RB, poten-
tially the register save area address, is
loaded into register 13.

If there are no other IQEs queued on the
RB, the saved registers are moved fror the
RB's register save area to the TCB's
register save area. The exiting RE is
dequeued from the task's active request
klock queue, and the routine to receive
control is checked to see if it is in a
wait state. If it is, the first word of
the TCB pointer is set to zero, indicating
that a task switch is necessary. If the RB

is not waiting, the status bits in the RB

for the routine to regain control are
checked to see if the routine is a type 3
or 4 svc. If it is, the name field in the

request block (XRBNM) is compared to the
name of the routine in the transient area.
If the 7routine is not in the transient
area, the transient area refresh subroutine
is entered to bring it in. EXIT Ekranches
to the dispatcher.

Dispatcher

Loading a PSW to pass control to a
routine associated with a request block is
called dispatching. The dispatcher re-
ceives control through a branch from EXIT,

type 1 exit, I/0 FLIH, or T/E FLIH. The
dispatcher gives contrcl either to the
routine last in control or to a different

routine, or places the machine in a wait

state.

After receiving control, the dispatcher
first determines if there are any asynchro-
nous exit routines to be scheduled. If
there are, the dispatcher enters Part 3 of
the exit effector to schedule these rou-
tines. Then it examines the first word of
the TCB pointer, IFATCBP, and dispatches
the task whose TCB is addressed. 1In sys-—
tems with the timer option (see Chapter 7),
the dispatcher dequeues the timer element
for a task time request before entering the
wait state, and enqueues it again when
leaving the wait state.

When dispatching a task, the
places the address of the task in both
words of the TCB pointer, restores the
registers, and loads the resume PSW. If
the task 1is not ready, the dispatcher
places the computer in a wait state by
turning on a bit in the resume PSW before
loading it.

dispatcher

The dispatcher has a
subroutine called the exit effector. The
exit effector schedules the input/output
supervisor's error routines using the I/C
supervisor transient area and schedules
requests to enter asynchronous exit rou-
tines by:

very important

e Initializing an IRB or the SIRB.
® Placing the IRB or the SIRR on the
active RB gueue.

e Manipulating the saved registers to
allow the dispatching of the asynchro-
nous exit routine.

EXIT EFFECTOR: The exit effector consists
of three parts. The first two parts are
used ky routines that require asynchronous
exits. The third part is a dequeueing
routine used by the dispatcher.

Part One: The

Part Two: The

Part Three:

first part of the exit
effector is the CIRB service routine. This
routine creates and initializes an IRB and,
if specified, acquires additional storage
within the dynamic area for a register save
area and a work area used for building
interruption queue elements (IQEs). The
address of the register save area is
located in the three low-order bytes of the
first word of the IRB. The format of the
IRB is shown in Figure 6.

96 bytes (required)

NEXAVL=*+4 (optional)

Work area for building IQEs (optional)

e e e
b e s e i e s . e s

Figure 6. IRB Format Options

second part of the exit
effector is wused Ly a calling routine to
schedule an asynchronous exit routine.
Part two queues the IQE provided in regis-
ter 1 as input, in FIFO order on either the
2-byte AEQ (asynchronous exit queue) or the
4-byte AEQ.

The third, dequeueing part of
the exit effector is entered by the dis-
patcher when the dispatcher finds that the
AEQ wpoints to an IQE. (Each time it is
entered, the dispatcher checks for entries
on the BAEQ.) Part three dequeues the IQE
from the AEQ, finds the IRB and TCB asso-
ciated with the IQE, queues the IQE on the
IRB and the IRB on the TCB's active RB
gueue. When two or more IQEs refer to the
same IRB, they are queued in first-in/
first-out (FIFO) order.

Part three ensures that no IRB is sched-
uled for a task which has the SIRB on its
active RB queue. The interruption queue
element remains on the asynchrconous exit
queue to defer scheduling of the current
IRB until the SIRB is inactive.

ENTRY TO ASYNCHRONOUS EXIT ROUTINES: The

name of the error routine to receive con-
trol is generated using information in the
UCB pointed to from the second half-wcrd of

the IQE. If the requested routine is in
the I/0 supervisor transient area, the
routine is dispatched. Otherwise, FINCH

(described in Chapter 4) brings the routine
into the I/0 supervisor transient area and
ensures that the return address, entry
point, and IQE address are in the registers
and that the current error routine entry
point is addressed by the SIRB.

Chapter 1: Interruption Supervision 21

EXITING FROM ASYNCHRONQUS EXIT ROUTINES:
When the asynchronous exit routine for the
first ICE is completed, EXIT is entered.
The IQE is then dequeued from the IRB and
is either returned to the I/0 supervisor or
queued on the NEXAVL field that immediately
follows the IRB, or discarded.

If there are no additional IQEs queued
on the IRB when an asynchronous exit rou-
tine returns, EXIT dequeues the IRB fror
the active RB queue. If there are addi-
tional IQEs queued on the IRB, the neces-
sary initialization steps are executed and
the IRB routine is reentered directly.

If the IRB and a work area were obtained
by using part one of the exit effector, the
work area is freed when the IRB is freed.
If the IRB is tc be reused, it is dequeued
but is not freed.

Resident Type 3 and 4 SVC Routine Option

During system generation, the user can
select the resident type 3 and 4 SVC
routine option. Frequently used routines
can ke made resident so they need not be
brought into the transient area each time
they are required. A resident type 3 or 4
routine assumes the characteristics of a
type 2 routine except when it issues an
XCTL macro instruction (see Chart 08).

The following differences in operation
result when the user chooses the resident
option (and the ortional extension of the
SVC table).

1. When the nucleus initialization pro-
gram (Appendix B) makes each type.3 ox
4 routine resident, the routine's
entry in the SVC table is changed.
The track address, record numker and
length fields are overlayed by X'FF'
and the entry point address of the
routine. Each time a type 3 or 4 SVC
routine is requested, the SVC table is
checked. X'FF' (a number larger than
any track address) indicates that the
entry corresponds to a resident type 3
cr 4 SVC routine. The format of each
entry for a resident type 3 SVC rou-
tine or for the first module of a
resident type U4 routine is:

Bits:

| 8 SR PR—— P 3-

—
| X'FF'
L-

e

I

T
Entry Point Address |ESA

L

p—- —

2. The SVC entry procedure for a resident
type 3 or 4 routine is similar to that
for a type 2 routine. A resident type
3 or 4 SVC routine does not require
the services of FINCH Lecause, like a

22

type 2, the routine need not be loaded

into the transient area.
3. The SVC exiting procedure does not
require the services of the transient
area refresh subroutine if a resident
type 3 or 4 routine receives control
since a resident routine does not
operate in the transient area and
could not have been overlayed since it
last had contrcl. The transient area
refresh subroutine examines the SVRB
of the SVC routine receiving control.
The SVRB indicates that the routine is
a type 3 or 4. If the entry point in
the SVRB does not correspond to the
SVC transient area entry point, a
resident type 3 or 4 SVC routine is
receiving controcl. If the entry point
is that of the transient area, a
non-resident routine is keing
requested and the transient area must
be checked to ensure that the routine
has not been overlayed since it was
last used.

4. The XCTL service routine checks the
RSVC load list created by the nucleus
initialization program (Appendix B) to
determine if the SVC routine is resi-
dent or if it requires loading.

INPUT/OUTPUT INTERRUPTIONS

Certain events, such as errors or com-
pleted actions in an input/ocutput device or
in the channel to which it is attached,
cause the number of the device and a word
of detailed information (about the status
of the channel and the nature of the event)
to be placed in storage. The I/0O FLIH is
not ccncerned with the channel scheduler or
with the details of input/ocutput handling.
It performs machine interruption supervi-
sion and insulates the input/output inter-
ruption from other types of interruptions.
The I/0 FLIH 1is given contrcl bLy the
input/output new PSW. The I/0 FLIH is
entered:

e Disabled for all maskable interrurtions
other than machine check.

e In supervisor state.

The first instruction of the I/0O FLIH is
a NOP/branch switch, set to a kranch ky the
first input/output interruption, allowing
input/output interruptions to be processed
in groups. The first interrupticn of a
group causes the I/0 FLIH to execute some
initialization instructions which block any
further execution of this "first-time
logic" for successive interruptions in a
group. Registers two through nine are
saved.

If the system is not pseudo disabled,
the input/output o0ld PSW is saved in the
current RB. The wait bit in the input/
output o0l1ld PSW is set to zero (non-wait
state), and registers ten through one are
saved in the TCB's general register save
area.

If the system is pseudo disabled, regis-
ters 10 through 1 are saved in the inter-

ruption supervision pseudo disable save
area, and the input/output old PSW is
saved.

. The I/0 FLIH branches directly to the
part of the input/output supervisor which
handles interruptions. When it regains
control from the I/C supervisor, the I/O

FLIH sets the NOP/pranch switch to no-
operation and restores registers 2 through
9.

The pseudc disable switch is tested. If
it 1is off, the 1I/0 FLIH enters the dis-
patcher. If it 1is on, the 1I/0 FLIH
restores registers 10 through 1 from the
pseudo disable save area, and returns con-
trol to the interrupted routine by loading
the input/output old PSW.

TIMER/EXTERNAL INTERRUPTIONS

Timer/external interruptions may come
from the orticnal hardware timer at loca-
tion 80, from the interrupt key on the

console, and from six external units. The
T/E FLIH in the fixed-task supervisor
handles two kinds of timer/external inter-

ruptions:

1. those caused by the optional hardware
tirer,

2. those caused by the interrupt key cn
the console.

The T/E FLIH passes control to time
vision for second level handling of timer
interruptions and to job management's
external interruption routine for second
level handling of interrupt key interrup-
tions.

super-

When an interruption occurs, the hard-
ware stores the current PSW in the timer/
external old PSW 1location, indicates the
cause of the interruption in the interrup-
tion code field in the T/E old PSW, and
loads the new PSW frcm the timer/external
new PSW location. This gives control to
the T/E FLIH.

The T/E FLIH saves registers 10 through
1 in the TCB, stores the timer/external old
PSW in a standard original cld PSW location
(see program 1listing), and examines the

interruption code in the timer/external old
PSW to determine the interruption type.

When a supported
identified, the

interruption type is
T/E FLIH branches tc the
appropriate second level handler. When the
interruption has been serviced, control
returns to the FLIH. Two supported inter-
ruptions may have occurred simultaneously.
In this case, the FLIH handles the second
interruption in the same way as the first.
After handling supported timer/external
interruptions, the FLIH branches to the
dispatcher.

If non-supported timer/external inter-
ruptions occur, the T/E FLIH returns con-
trol immediately to the interrupted routine
rather than to the dispatcher.

PROGRAM INTERRUPTIONS
If the program being executed attempts

an improper action, a program interruption
occurs and a code describing the attempt is

stored in the program old PSW. Improper
events causing program interruptions
include:

1. addressing non-existent operation
codes, and

2. attempting to execute privileged
instructions.

Users may specify fixed point overflow,
decimal overflow, exponent underflcw and
significance as additional improper events
requiring special handling.

If the user wishes to handle some or all
program interruptions, he first issues a
SPIE macro instructicn which generates a
program interruption element (PIE) and
inserts its address in the TCB. The rro-
gram first 1level interruption handler
(P FLIH) is given control by the hardware
after any program interruption. The P FLIH
checks the TCB for an address cof a PIE. If
no PIE address is present in the TCB, the
interruption is wunanticipated, and the P
FLIH passes control to the PROLOG routine
to initiate abnormal termination of the
task.

If a PIE address is present in the TCB,
the PIE is examined and the address of a
program interrurtion control area (PICA) is
extracted. The P FLIH tests the wuser's
program interruption mask 1in the PICA to
see if the user is handling the type of
program interruption that has occurred.
The type that has occurred is shown in the

interruption code in the program interrup-
tion old PSW. If the user is handling the
interruption, the P FLIH saves the old PSW

and registers 14 thrcugh 2 in the PIE.

Chapter 1: Interruption Supervision 23

Register 14 is loaded with a return
address, register 1 with the address of the
PIE, and register 15 with the address of
the wuser's routine. The P FLIH places the
address of the user's interruption routine,
obtained from the PICA, into the o0l1d PSW,
restores the work registers from the save
area, and loads the modified o0ld PSW to
return to the user's program at the entry
point of his program interruption handler.

The user may return to the main body of
his program from his program interruption
handling routine either by a direct branch
or by issuing a RETURN macro instruction.
If the user returns to the main body of his
program by a direct branch, he must reset
the first-time-entry switch in the PIE.

24

If the program interruption type is not
handled by the user, PROLOG is entered Ly a
kranch. This routine sets up the akncrmal
termination linkage and branches to ABTERM.

MACHINE CHECK INTERRUPTIONS

If the error detection equipment finds a
machine error, information representing the
internal state of the machine is placed in
the diagnostic scan-out area of wmain
storage. A machine check can cause control
to be passed tc a system environment re-
cording routine if one of these is included
in the system environment. Otherwise, the
syster is placed in the wait state.

The task supervision service routines
maintain control information, cause tasks
to be executed, and perform other task-
related services. Task supervision service
routines:

e Maintain task control blocks.
e Enter tasks into the wait state.
in the event

e Post completed events

control block.

e Maintain control 1levels
request blocks.

indicated by

TASK SUPERVISION ROUTINES

The task supervision service routines
are functionally divided into two areas in
the fixed-task supervisor: task modifica-
tion and task termination.

TASK MODIFICATION

ATTACH: When an ATTACH macro instruction
is 1issued, the supervisor gives control to
the ATTACH service routine. The ATTACH
service routine passes control to the rou-
tine requested in the ATTACH macro instruc-
tion and regains control when the requested
routine completes. ATTACH optionally posts
an event control block to mark the comple-
tion, and, also optionally, passes control
to a user-specified exit routine. If nc
special exit 1is specified, ATTACH returns
control to the attaching routine.

EXTRACT, SPIE, STAE: Through the EXTRACT,

SPIE, and STAE service routines, task
supervision allows the user to make better
use of the system's controls. EXTRACT

provides a processing program with informa-

tion contained in specified fields of the
task control Lklock. SPIE allows the user
to specify the address of an exit routine

to be entered when specified program inter-
rupticns occur. The SPIE routine sets the
program mask in the PSW as specified when a
SPIE macro instruction is given. STAE
allows the user to specify the address of
an exit routine to be entered when an ABEND
is scheduled for the task.

WAIT, POST: Through the WAIT and POST
service routines, task supervision monitors
the movement of the task between the ready
and wait states. WAIT prevents the task
from continuing until an event specified in
the WAIT macro instruction parameters has

CHAPTER 2: TASK SUPERVISION

taken place and has been indicated by the
execution of a POST macro instruction. As

an option, a WAIT routine to service mul-
tiple event completions may be chosen by
the user. POST signals that the event

represented by a specified event control
block has occurred. This may result in the
task keing moved from a wait state to a
ready state.

ENQ, DEQ: For the shared direct access
device (shared DASD) feature only, task
supervision serializes the wuse of shared

data through the ENQ and DEQ service rou-
tines, by indicating to the I/0 supervisor
when it should reserve and release shared
direct access devices. If two CPUs share a
direct access device, then each CPU must
issue a RESERVE macro instruction (pro-
cessed by the ENQ service routine) kefore
using the device, and a DEQ macro instruc-
tion when finished using the device. This
prevents both CPUs from attempting to
access the same device simultaneously.

TASK TERMINATICN

ABTERM, ABEND, ABDUMP: A task may be

terminated by itself or Ly the system.
Task supervision corpletes a task's execu-
tion through ABTERM and ABEND service rou-
tines. The ABTERM service routine
schedules the ABEND routine, which ter-

minates the task. The ABDUMP service rou-
tine is used when a full storage dump is
required.

TASK SUPERVISION CONTROL FLOW

As shown in Chart 03, flow of task
supervision is the flow of the individual
modular service routines. Each receives
control from interruption supervision and
returns control to its particular exiting
procedure. The one exception is the ABTERM
routine, which is branched to by any ser-
vice routine, and returns to that routine
by a branch.

ATTACH

The ATTACH service routine searches for
the RB of the requested routine in the
loaded program list. If +the requested
routine is not in the dynamic area, ATTACH
uses FINCH to bring it in. ATTACH places a
request block on the active RB queue for
the attached routine. Control is given to
the attached routine ky loading a PSW with

Charter 2: Task Supervision 25

an LPSW. The active request block queue is
ordered as follows:

e RB for the attached routine.
e SVRB for the ATTACH routine.
e RB for the attaching routine.

When the attached routine completes, the
ATTACH routine is dispatched and optionally
posts the event control block. If the
attaching routine specified an exit routine
in the ETXR parameter of the ATTACH macro
instruction, ATTACH places a request block
on the active RB gueue for the exit rou-
tine. When the ATTACH routine completes,
the exit routine is dispatched, if this
option was specified. When the exit rou-
tine completes, the attaching routine is
dispatched.

EXTRACT

The EXTRACT service routine is entered
from interruption supervision when the
EXTRACT macro instruction is issued. Upon
entry, EXTRACT zeros all fields in the list
area specified Ly the user, except for the
task input/output table (TIOT) address
field. If the macro instruction's param-
eters specified TIOT or ALL, the address in
the TCB of the TIOT is inserted into its
respective field in the user's list.
EXTRACT issues an SVC EXIT instruction on
completion.

SPIE

The SPIE service routine is used to set
up indications that the user has requested
program interruption control. SPIE is
entered by the SVC SLIH when a SPIE macro
instruction is given. Thirty-two bytes of
main storage space for a program interrup-
tion element (PIE) 1is obtained, and the
address of the PIE is saved in the TCB. 1In
creating the PIE (Figure 7), the SPIE
routine places in the first four bytes the
address of the program interruption control
area (PICA) specified by the processing
program in the SPIE macro instruction. The
SPIE routine sets aside the second eight
bytes as a program interruption old PSW
save area, and the next 20 bytes as a
5-register save area.

A program mask whose contents is deter-
mined by the interruptions selected is
stored into the caller's resume PSW. SPIE
executes an SVC EXIT instruction on
completion.

26

ol' 1
| I
| User's PICA Address |

4} -
I I
| |
| 0ld PSW Save Area |
| |
| |

12} i
| |

:F Register Save Area %:
| |

32t 4

Figure 7. Program Interruption Elerment

(PIE) Format

STAE

The STAE service routine provides an
exit routine address at which control will
be returned to the wuser if an ARENL is
scheduled for his task. STAE is entered by
the SVC Second Level Interruption Handler
(SLIH) when a STAE macro instruction is
issued. The STAE service routine creates a
16-byte STAE ccntrol klock (SCB) as shown
in Figure 8.

STAE also places the address of the SCB
in TCB field TCBNSTAE. If the task enters
abnormal termination processing, the
TCBNSTAE field is tested Ly the ABEND

routine to determine whether STAE process-
ing (the ABEND/STAE interface rcutine)
should be invoked for the task.

Or 1
| Zero or |
| Address of Previous SCB |

4t 1
| Address of STAE |
| Exit Routine |

8} i
| Address of STAE Exit Routine |
| Parameter List |

12} 1
| Address of User's |
| Request Block |

16L J

Figure 8. STAE Control Block (SCB) Format

WAIT -- SINGLE EVENT

When WAIT 1is entered by the SVC inter-
ruption handler, the wait count passed as a
parameter of the WAIT macro instructicn is
tested for =zero. If it is zero, the
routine returns immediately by branching to
the type 1 SVC exit. If it is non-zero,
then the resume PSW of the caller is
enabled for input/output and external

interruptions. The wait and complete bits
are tested in the ECB whose address was
passed by the macro instruction. When the
complete bit is on, indicating that this
event 1is already completed, WAIT branches
tc the type 1 exit. If the wait bit is on,
indicating this event is already being
waited for, WAIT terminates the task by
branching to ABTERM. (Checking the wait
bit is performed only if the validity check
option 1is selected during system genera-
tion.) If neither bit is on, the wait bit
is turned on and the address of the current
RB is placed in the ECB. A wait count of
one is placed in the current RB, and the
first word of the TCB pointer, IEATCBP, is
zeroed as a signal to the dispatcher that
the task is waiting. WAIT returns by
branching to the type 1 exit in interrup-
tion supervision.

WAIT -- MULTIPLE EVENT

The WAIT service routine is entered by
the SVC FLIH as a result of a WAIT macro
instruction. Upon entry to the WAIT rou-
tine, the wait count passed as a parameter
is tested for =zero. If it is zero, the
routine returns imrmediately by branching to
the type 1 SVC exit. If the wait count is
non-zero, the resume PSW of the caller is
enakled for input/output and external

interruptions. The wait count is saved and
a loop initialized +to address the ECBs
addressed by the macro instruction parame-

ter list. An ECB counter is incremented as
each ECB is addressed.

As in single-event WAIT, on an optional
basis, the wait bit in the ‘first ECB is
tested. If it is on, indicating that this

ECB is alrepdy being waited on, the next
ECB is addressed. If the wait bit is off,
the completion bit is tested. If the

completion kit is
POST has not yet occurred, the wait bit is
turned on and the address of the current RB

is placed in the ECB. If this event has
already completed -- if the completion bit
is on -- the wait count is decremented and

tested for zerc. If the count is not zero,
a test is made to see if this address is
the last element in the parameter ECB list.
If it is not the last element, the cycle is
repeated. If it is the last element, the
lioop is exited. If the wait count Lkecomes
zero, all the wait bits in the ECBs are
turned off and the WAIT routine exits tc
the type 1 exit, without putting the cur-
rent RB into a wait state since its count
has already been satisfied.

When all ECBs have been addressed and
the wait count has not beccme zero, the
total number of ECBs specified is compared

If the number
specified is less than the count,

to the original wait count.
of ECBs

off, indicating that a.

the count cannct be satisfied; the task is
abnormally terminated by scheduling ABEND
through a branch to ABTERM.

If the wait count is 1less than the
number of ECBs, a bit is turned on in the
RB to indicate to POST that a multiple-
event WAIT has been issued where the nurber
of ECBs is greater than the wait count. If
the wait count is less than or equal to the
number of ECBs, WAIT inserts the wait ccunt
into the current RB and sets the first word
of the TCB pointer to zero as a signal- that
the task 1is waiting. The WAIT service
routine returns by branching to the type 1
exit routine of interruption supervision.

POST

The POST service routine is entered by
the SVC FLIH after a POST macro instruction
is issued, but an alternate entry is gro-
vided so that system routines can branch
directly to POST. Ugon entry, POST tests
the completion kit of the ECB whose address
was passed as an input parameter. If it is
on, indicating that the ECB has already
teen posted, the POST routine returns by
branching to the type 1 exit or tc the
system routine which entered POST.

If the completion kit is off, the wait
kit is tested to see if this event is keing
waited on. If the kit is off, the comple-
tion code is placed in the ECB and the
completion bit is turned on. If the wait
kit is on, the RB wait count is decre-
wented, the completion code is placed in
the ECB, the completion bit is turned on,
and the wait bit is turned off. POST
returns by branching either to type 1 exit
or to the system routine which branched to
POST.

In systems with a multiple event WAIT,
POST performs further operations. When the
wait count in the RB 1is decremented to
zero, POST tests a bit in the waiting RB to
see if the number of ECBs srecified in the
associated WAIT was greater than the wait
count specified.

If the number of ECBs was greater, then
POST turns off the wait bits in all ECBs in
the ECB 1list specified which have not yet
been posted, to indicate that no cne is

waiting for these events to be completed
and to prevent an =@ erroneous POST. The
address of the ECB 1list is located in a

register save area belonging to an RB or to
the TCB. POST finds the addresses by
determining which RB is waiting. If RB 3
in the following diagram 1is waiting, the
address of the ECB list is in the register
1 field of the TCB register save area. if
RB 2 is waiting, the list address is in the
same field of the register save area of RB

Chapter 2: Task Supervision 27

3. If RB 1 is waiting, the address is in
the register save area of RB2.

A
-

I-—-'-—d
|
|
A\
o o e
T——

o e e e e e e e e

If the number of events waited on equals
the number of events specified, the wait
bits are turned off by POST as the events
complete. After turning off the wait bits,
POST places the completion code in the ECB,
and returns.

ENQ

The ENQ service routine is entered fror
the SVC SLIH after a RESERVE or ENQ macro
instruction (SVC 56) is issued. ENQ rou-
tine control flow is shown in Chart 04.

On entry, register 1 contains the
address of a parameter list which the ENC
routine scans to determine if the routine
was entered because of a RESERVE or a

normal ENQ. In PCP, a normal ENQ is
treated as no-operation (NOP) because
enqueueing operations are not required;

control returns to the calling routine.

RESERVE 1is used in PCP to permit direct
access storage devices to be shared. When
the ENQ service routine processes a RESERVE
macro instruction, it gives the requesting
task exclusive control of a specified
device via a hardware reserve. The task
frees the device with a DEQ macro instruc-
tion, resulting in a hardware release. If
the parameter 1list indicates that RESERVE
is requested, the ENC routine tests the
parameter list for validity (see Chart 06).

The list must be in the format shown 1in
Figure 9.
If the parameter 1list is not in the

correct format, the ENQ routine issues an
SVC 13 to aknormally terminate the task
with a system error code of 438. If all
elements in the rarameter list are valid,
the ENQ routine examines the major queue
control block (QCR) queue via the major QCB
origin in the CVT. (See Appendix E for
major and minor QCB formats.)

if there are nc major QCBs (QCCB pointer
in the CVT 1is zero) or if the major
resource name in the parameter 1l1list does
not match the maijor resource name of any
major QCB on the gueue the routine examines

28

the RET parameter of the ENQ macro instruc-
tion. If RET=TEST is specified (indicating
an inquiry), the return code in the parame-

ter list is set to zero to indicate that
the requested resource is available (has
not been previously reserved); control
returns to the calling routine. If RET=

TEST is not specified, ENQ creates a wajor

o
-

T
Rname |
length |

L

Return

FF Codes code

o e e o

=

Address of
Qname

Address of
Rname

[y
N [e<]
[o o e . e gt e o e e

Address of
UCB Pointer

AP S5 S — T
|
|
|

TR SO SpE——

[
[=))

ENQ Parameter List
Byte 0 indicates the end of the ENQ param-
eter 1list (always a single entry
list for RESERVE).
Byte 1

length of the minor resource name.

Byte 2 parameter codes:

Bit 0 - not used in PCP.

Bit 1 - bits 1 and 4 must be 0 and
1 respectively, to indicate
the reserve function of
ENQ. If bits 1 and 4 are
not 0 and 1, ENQ is treated
as a NOP.

Bit 2 - not used in PCP.

Bit 3 - not used in PCP.

Bit 4 - see bit 1.

Bits 5, 6, and 7
001 - indicates RET=HAVE
011 - indicates RET=USE
111 - indicates RET=TEST.

Byte 3 return code provided ky the control

program if RET=TEST, USE, or HAVE

is specified.

Byte 4 zero.

Bytes address of the

5-7 resource name.

major

Byte 8 zero.

address of the minor

resource name.

Bytes
9-11

Byte
12 zero.

address of the UCB

pointer.

Bytes
13-15

Figure 9. ENQ Parameter List

and minor QCB to indicate that the reques-
tor has control of the specified resource.
The routine inserts the UCB address of the
specified shared direct access device into
the minor QCB, and increments the ENQ count
in the TCB by one to indicate that the task
has reserved a resource.

In PCP, the ENQ count is only incre-
mented for RESERVE macro instructions
issued, since ENQs are NOPs. The ABEND
routine examines the TCB ENQ count to
determine if a purge of outstanding device
reservations is necessary during task ter-
mination. The ENQ routine increments the
UCB reserve count by one to indicate to the
1/0 supervisor that reservation of the
device is required. This would prevent
another CPU from gaining access to the
device until the I/O supervisor determines
the UCB reserve count is 0 and releases the

device. Again, the routine tests the RET
parameter. If RET=TEST, RET=USE, or RET=
HAVE 1is specified, the return code in the

parameter list is set to 0 to indicate to
the requestor that the resource is avail-
able; control is returned +to the calling
routine. If RET=TEST, USE, or HAVE is not
specified, the return code is not set.
Control returns tc the calling routine.

If wupon examining the major QCB pointer
in the CVT, the ENQ routine finds that a
major (CB exists for the major resource
name specified in the parameter list, but a
minor QCB for the specified winor resource
name does not exist, the routine interro-
gates the RET parameter. If RET=TEST is
specified, the routine sets a zero return
code in the parameter list to indicate that
the requested resource is availakle and
returns control to the calling routine. If
RET=TEST is nct specified, the routine
creates a minor QCB and queues it on the
major (CB to indicate that control of the
requested resource has been assigned to the
caller. The UCB address is placed in the
minor ¢CB, the TCB ENQ count and UCB
reserve count are adjusted, and processing
continues as akove.

If both a majcr and minor QCB exist for
the requested resource, the RET= parameter
is tested. If RET=TEST, USE, or HAVE is
specified, the routine sets the return code
to 8 to indicate that the requested
resource has already been acquired by the
requestor and control returns to the call-
ing 1routine. If RET=TEST, USE, or HAVE is
not specified, the ENQ routine issues an
SVC ABEND instruction to abnormally termin-
ate the requesting task.

DEQ

The DEQ service routine is entered from
the SVC SLIH when a DEQ macro instruction

(SsVC 48) is 1issued. DEQ routine control
flow is shown in Chart 05. DEQ determines
whether the I/0 supervisor should free a
shared direct access device which was
reserved by a previous ENQ.

On entry, register 1 contains the
address of a parameter 1list. The DEQ
routine performs a validity check of the
parameter list (see Chart 06). If the
Oname and Rname indicated by the seccnd and
third words of the list (see Figure 9) are
not valid, DEQ issues an SVC ABEND instruc-
tion with a system error code of 430. If
the Oname and Rname are valid, the routine
examines the major QCB queue. If no rmajor
QCBs exist, or the Qname specified in the
parameter list does not match the Qnamre of
an existing major QCB, control returns to
the caller. Control also returns to the
caller if a major QCB exists for the
specified Qname, but a minor QCB does not
exist for the specified Rname.

If both major and minor QCBs exist for
the specified ¢Cname and Rname, the DEQ

routine obtains from the wminor QCE the
address of the UCB representing the direct
access device on which the resource
resides, and decrements the UCB ENQ count

ky onme. If the UCB reserve count is then
zero, an EXCP macro instruction is issued
to 1release the device. If the UCB reserve

count is not zero, a release is not
performed.
The DEQ routine decrements the TCB ENQ

count by one to reflect the task's release
of the specified resource. The routine
reroves the minor QCB from the minor QCB
queue and issues a FREEMAIN racro instruc-
tion to release the space occupied Ly the
winor QCB. If no more minor QCBs remain on
the queue, the routine removes the major
QOCB from the major QCB queue and frees the
space occupied by it. The DEQ routine
returns control to the calling routine.

ABTERM

Certain system routines branch to the
resident abnormal termination (ABTERM) ser-
vice routine to schedule the abnormal terxr-
mination of a task. ABTERM returns to the
syster <routine by branching to the address
passed to ABTERM in register 14.

When entered by a type 1 SVC routine,
ABTERM saves the right half of the SVC old
PSW and replaces the right half with the
address of an SVC ABEND instruction. The
task completion code is stored in the
TCBCMP field provided in the TCB. After
turning off the type 1 switch in the SVC
FLIH, ABTERM 1loads registers 0 and 1 from
the tyre 1 SVC save area, restores regis-

Chapter 2: Task Supervision 29

ters and branches on register 14 as set by
the SVC routine which branched to it.

When entered by any other system rou-
tine, ABTERM locates the current RB on the
RB queue of the TCB, saves the wait count
from the RB, replacing it with a zero wait
count, and saves the right half of the
resume PSW from this RB. The task comple-
tion code is stored in the TCBCMP field in
the TCB. ABTERM replaces the right half of
the resume PSW in the RB with the address
of an SVC ABEND instruction, restores the
registers and branches on register 14 as
set by the system routine which branched to
it.

ABEND

The ABEND service routine is a type U4
SVC routine that is used for both normal
and aknormal termination of tasks. The
basic function of ABEND is to terminate all
internal activities of the current task and
give control via XCTL to the GO module of
job management to continue processing.

Normal End

When ABEND 1is entered for a normal
termination, it <checks if all data sets
have been closed. If any data sets are
open, ABEND calls the data management CLOSE
routines. The task completion code is
stored in the TCBCMP field of the TCB, and
all main storage in the dynamic area is
designated as a free area. ABEND then
transfers control (through an XCTL) to job
management to initiate either the next step
of this job or the first step of a new job.

Abnormal End

When ABEND is entered for an
termination,

aknormal
it first determines, from TCB
field TCBNSTRE and from the reason for
entry, whether STAE processing should be
performed for the abnormally terminating
task. If STAE processing 1is indicated,
ABEND invokes the ABEND/STAE interface rou-
tine, which will eventually return control
to the wuser at the exit routine address
specified in the STAE macro instruction.

ABEND next determines if ABTERM was
entered. If it was, ABEND restores the PSW
and wait count tc the RB that called ABEND.
If ABTERM was not entered, ABEND stores the
completion code in the TCBCMP field of the
TCB. ABEND purges all input/output opera-
tions initiated for this task using the
HALT I/0 ogption. It performs validity
checking of the various system queues --
such as main storage supervision queues,
contents supervision queues, and data man-
agement queues -- to prevent ABEND from

30

being requested while ABEND is in progress.
ABEND removes the SIRB from the active RB
queue.

ABEND determines the

amount of wmain

storage it will need and acquires the
storage either by using GETMAIN or by
overlaying reentrant code at the beginning

of the dynamic area.

ABEND determines if the abnormally ter-

rinating routine has requested a dump. If
it has, ABEND searches the TIOT for a
SYSABEND ddname. If this entry is not

located, ABEND assembles pertinent informa-
tion and packs it in main storage for
eventual printing Lky the 3jok management
routines. This information is called an
indicative dump. If the SYSABEND entry was
located, ABEND opens a DCB and calls the
ABDUMP type 4 svc routine. ABDUMP
assembles a full hex-formatted dump of the
TCB, PSW, RBs, save areas, and all of main
storage. If Main Storage Hierarchy Support

is included in the system, ABDUMP
recognizes and dumps main storage in
hierarchies 0 and/or 1 associated with the

terminating job step. Storage 1limits are

obtained from the boundary box.

Upon completion of either the indicative
dump or ABDUMP, or if no dump was taken,
ABEND attempts to CLOSE all data sets by
calling the data management CLOSE routines.
As in normal termination, all main storage
within the dynawic area is designated as a
free area. ABEND transfers control
(through an XCTL) to job management to
print the indicative dump if provided and
to initiate the next task.

Shared Direct Access Device ABEND

If shared DASD is included in the sys-
tem, ABEND performs additional processing.
This processing is the same for normal end
and abnormal end. ABEND determines if the
task has released all the devices it re-
served. If not, ABENL releases them.

The sixth load of
IEAATM05, SVC name IGC0501C) examines the
TCB ENQ count. If the count is not zero,
the reserve counts in all UCBs representing
shared direct access devices are inspected.
If any UCB reserve count is not zero, it is
reset to zero and an EXCP macro instructicn
is issued to release the device. When all
reserved devices have been released, AREND
resets to zero the TCB ENQ count and the
major OQOCB gqueue origin in the CVT in
rreparation for the next jok step.

ABEND (module

Normal termination is not converted to
abnormal termination even if the task did
not release its reserved devices during
termination.

The main storage supervision service
routines establish the availability of main
storage space and dynamically assign space
for program 1loading and work areas. The
main storage supervision service routines:

e Allocate
ly.

main storage space dynamical-

e Release main storage space
on request.

dynamically

e Maintain a record of all free areas of
main storage.

MAIN STORAGE SUPERVISION ROUTINES

Main storage supervision includes the
GETMAIN and FREEMAIN service routines. It
is resident within the nucleus, is not
reenterable, and is disabled for all mask-
able interrupticns except machine check.

The GETMAIN service routine allocates
storage to a task according to its needs,
when a GETMAIN macro instruction is issued.

The FREEMAIN service routine releases

storage space on request, when a FREEMAIN
macro instruction is issued.

MAIN STORAGE SUPERVISION CONTROL FLCW

Main storage supervision control flow is
shown in Chart 07. The GETMAIN and FREE-
MAIN routines receive control from the SVC
FLIH and pass control through type 1 exit.
Register-type GETMAIN and FREEMAIN requests
have a separate entry point. An exception
occurs when an error condition is encoun-
tered. In this case, control passes to
ABTERM through a branch.

In a PCP system, there 1is only one
subpool, and it 1is unnumbered. All main
storage requests are satisfied from this
subpool. If subpool numbers are specified
in GETMAIN and FREEMAIN macro instructions,
they are ignored.

Main storage is divided into two areas,
the fixed area and the dynamic area. The
main storage supervisor controls only the
dynamic area.

If 1IBM 2361 Core Storage and Main Stor-
age Hierarchy Suppcrt for IBM 2361 Models 1
and 2 are included in the system, the
dynamic area is divided into two storage
areas, processor storage (hierarchy 0) and

CHAPTER 3: MAIN STORAGE SUPERVISION

IBM 2361 Core Storage (hierarchy 1). The
main storage supervisor allocates space
according to hierarchy in the upper (high
address) porticn of a storage area for
routines requested by LOAD macro instruc-
tions and for data areas requested Ly the
user. The main storage supervisor allo-
cates space according to hierarchy in lcwer
(low address) portion of a storage area to
the processing program and to rocutines
called through LINK, XCTL, and ATTACH racro
instructions.

If IBM 2361 Storage is not included in
the system, the entire dynamic area is in
processor storage. Space is allocated in
the same manner as descriked in the preced-
ing paragraph excert that all space is
allocated from processor storage.

Boundary Box

Allocation of space in the dynamic area
is controlled through use of a boundary box
which is addressed by TCB field TCBMSS.
The boundary box is initialized Ly the
nucleus initialization program (see Appen-
dix B) and consists of three words.

e The first word of the Lkoundary box
contains the address of the first ele-
ment of a free area queue for processor
storage.

e The second word contains the address of
the beginning of the dynamic area.

e The third word contains the address,
plus one kyte, of the end of processor
storage.

If Main Storage Hierarchy Support is
included in the system, the boundary Lkox is
expanded to six words (see Figure 10). The
first byte of the expanded boundary box
contains a "1" in bit 7 to indicate that
hierarchy support is included. The first
three words of the expanded Loundary box
are used to control the allocation of
processor storage srace (hierarchy 0).
These three words are the same as the
three-word boundary kox descriked above.

If IBM 2361 Core Storage is not included
in the system but Main Storage Hierarchy
Support is included, the last three words
cf the expanded boundary box are set to
zero. If IBM 2361 Core Storage is included
in the system, the last three words (Wcrds
4, 5, and 6) of the expanded boundary box
are used to control the allocation of this
storage space (hierarchy 1).

Chapter 3: Main Storage Supervision 31

D

P |

| I

| | Free Area |

| | |

| t T i

| C | t B | # Bytes |

| b L {

| | |

| | Allocated Area |
Dynamic | |
Area b 4
(Hierarchy 0) | |
| | Free Area |

| | |

| t T i

| B | 0000 | # Bytes |

| t L 1

| | |

| | Allocated Area |

* A | |

|8 4

r 1

f | TCB + 24 |

| o B 1 |

| || TCBMSS | |

| e S |

| | | Boundary |

| | + Box |

| I S v

| I It c | |
N | e {1 |
Fixed | | t A | |
Area I |
| | I ¢+ D | |

| 1 ————] |

| | |+ E | |

| | et I

I | | + D | |

| | e 1

| I [A |
v\ — L
—-—— J

Figure 10.

e The fourth word of the

Processor Storage

Main Storage Organization

boundary box
contains the address of the first ele-
ment of a free area queue for IBM 2361
Core Storage.

The fifth word contains the address of
the beginning of IBM 2361 Core Storage
space.

The sixth word contains the address,
plus cone byte, of the end of IBM 2361
Core Storage srace.

Free Area Queue

A free area queue is a series of free
area queue elements which are chained
together. The free area queue for proces-

sor storage
hierarchy 0

32

indicates the total amount of
space not being used at a given

F
r 1
| | T
Allocated Area	
L 4 I	
L)	
Free Area	
L 4	
r T 1	
t G	# Bytes
L L J I	
T Al	
	.
	Dynamic
Alloccated Area	Area
	(Hierarchy 1)
L 4 l	
L} a1	
Free Area	
t T i	
0000	# Bytes
L L J I	
r 1	
I [
Allocated Area	
L J ;

IBM 2361 Core Storage

time. The free area queue for IBM 2361
Core Storage indicates the total amount of
hierarchy 1 space not being used.

Free Area Queue Element

Each free area queue element (FQE) is a
double-word which represents a distinct
free area. The first word contains the
address of the next lower FQE on the queue.
The first word of the FQE at the 1lcwest
address 1in a storage area (processor stor-
age or IBM 2361 Core Storage) ccntains
zeros. The second word contains the length
of the free area (in bytes). The FQE is
always in the lowest eight bytes of each
free area (see Figure 10). Each FQE kegins
and ends on a double word boundary;
requests for main storage space are always
rounded up to a double word boundary.

GETMAIN

When a GETMAIN is executed, the free
area queue is searched for space as large
or 1larger than that required. If found,
the space is allocated, and the amount used
is subtracted from the free area from which
it was removed. If space is not found and
the request was conditional, GETMAIN ends
by branching to type 1 exit. If the area
is not found and the reguest was uncondi-
tional, GETMAIN branches to ABTERM to
schedule the termination of the task.

FREEMAIN

When a FREEMAIN is executed, the area to
be freed is checked for any overlap with
existing free areas. If overlap exists, an
error has occurred and FREEMAIN branches to
ABTERM for the scheduling of an aknormal
termination of the task. Otherwise, FREE-
MAIN combines the area to be freed with any
adjacent free area, by updating that area's
FQE. If there are nc adjacent free areas,
FREEMAIN creates an FQE for the newly freed
area and queues the FQE on the free area
queue. On completion, FREEMAIN branches to
type 1 exit.

Chapter 3:

Main Storage Supervision

33

CHAPTER 4: CONTENTS SUPERVISION

Contents supervision service routines
record the identity, main storage location,
size, properties and users of routines
which, with the data they operate on, make
up tasks. Completed routines remain in
storage if they were originally brought in
by a LOAD macro instruction. Contents
supervision service routines maintain two
lists (see the discussion of request block
queueing in the introduction to this manu-
al) of routines in the dynamic area:

e Active request block queue -- a list of
active routines given control by type
II, III, or IV linkage, excluding type
1 SvCs.

list of
brought intc

¢ Loaded program 1list -- a
frequently-used routines
storage by a LOAD.

Each routine in these lists is repre-
sented by an RB that immediately precedes
the routine in main storage. Exceptions to
this are: the SIRB, which is permanently
in the nucleus; SVRBs, which are always in
the wupper end of main storage, away from
their associated routines; and "minors,"
which are RBs placed on the loaded progran
list by the ortional IDENTIFY macro
instruction and which represent routines
embedded in the processing program.

Contents supervision maintains the two

lists by chaining the RBs for the routines.
Each 1list is addressed by the TCB.

CONTENTS SUPERVISION ROUTINES

Contents supexrvision is made up of the
following service routines: LINK, LOAD,
XCTL, IDENTIFY (optional), DELETE, SYNCH,
and a common subroutine called FINCH.

LINK: This service routine passes control
from the routine that issued the LINK macro
instruction to another routine so that the
issuer regains control when the second
routine completes.

LOAD: This service routine brings a rou-
tine specified in the parameters of a LOAD
macro instruction into main storage and
inserts its RB on the loaded program 1list
with a use count of one. If the routine is
already on the 1list, the service routine
merely adds one to the wuse count, which
thus reflects +the number of times a LOAD
has been issued for this routine minus the
number of times a DELETE has been issued
for it.

34

XCTL: This service routine passes control
from the routine issuing the XCTL macro
instruction to a requested routine. When
the requested routine completes, contrcl is
not returned to the issuer, which has been
removed from the active RB queue, kut to
the routine which preceded the issuer of
the XCTL. The issuer of the XCTL is
removed from main storage if it was not
brought into main storage by a LOAD macro
instruction.

IDENTIFY: This service routine causes a
routine named by the issuer of the IDENTIFY
macro instruction to have a minor RB
created for it, and causes this RB to be
chained on the loaded program list. The RB
which is the result of the IDENTIFY is on
the LOAD 1list only for control purposes.
The RBs of these identified routines are
removed from the 1loaded program list and
the RB space 1is released whenever these
routines are deleted.

DELETE: This service routine decrements
the use count in the RB of a LOADed routine
named by the issuer of a DELETE macro
instruction. When the use count kecomes
zero, DELETE rewoves the RB from the loaded

program list and frees the storage space
occupied by the routine. (Note: In sys-
tems which include the IDENTIFY macro

instruction, any minors associated with the
named routine are also removed by DELETE.)

SYNCH: This serxrvice routine creates,
initializes, and queues program request
blocks. System routines or processing rro-

grams use this routine to create PRBs for
segments of code which they designate by
placing an entry point address in register
15 and executing an SVC SYNCH instruction.
After the PRB is queued on the active
request block queue, SYNCH returns by
executing an SVC EXIT instruction.

FINCH: This service routine interfaces
with the data management BIDL routine, and
with program fetch (described in Charter 5)
to retrieve routines from auxiliary stor-
age. Routines may Le retrieved when a
LINK, LOAD, XCTL, or ATTACH macro instruc-
tion 1is issued, or when a non-resident SVC
routine or non-resident input/output surer-
visor error routine is requested. After
the routines are loaded into main storage,
FINCH records information concerning their
attributes and main storage locations into
the arprorriate contents supervision lists.

CONTENTS SUPERVISION CONTROL FLOW

As shown 1in Chart 08, the flow of
contents supervision is essentially the
flow of the individual service routines,
which 1receive control from interruption
supervision and pass control to their par-
ticular exit routine on completion. FINCH
is an exception in that it receives control
from LINK, LOAD, and XCTL, as well as frorx
a number of other system routines including
ATTACH and the SVC FLIH, and returns to
whatever routine requested its services.

The routines which service LINK, LOAD,
XCTL, and ATTACH macro instructions direct
program loading into hierarchies of main
storage if Main Storage Hierarchy Support
is included in the system. These routines,
upon entry from the SVC SLIH, extract the

hierarchy number from the parameter 1list
and, if a cory of the requested program
must be loaded, pass the hierarchy number

(0 or 1) to the FINCH service routine. The
GETMAIN request issued by FINCH then allo-
cates storage in the specified hierarchy.

LINK

The LINK
the SVC SLIH in response to a
instruction.

service routine is entered by
LINK macro

LINK searches the
for the RB of the requested routine. If it
is found, and it is not already on the
active RB queue, LINK prepares the RB for
dispatching. If the routine is not found
or if it is active, LINK enters FINCH.
FINCH constructs an RB for the requested
routine and places both the RB and its
routine in the lower end of the dynamic
area.

loaded program list

On return from FINCH, LINK prepares the
RB for dispatching by:

e Initializing LINK's SVRB so that
register 1loading causes the requested
routine to execute EXIT when it issues

the RETURN macro instruction.

e Flagging the requested routine's RB to
indicate that it is active.

e Placing the requested routine's RB on
the active RB queue between the RB for
LINK and the RB for the issuexr of the
request, to ensure that the requested
routine is entered when LINK issues
EXIT.

e Issuing the SVC EXIT instruction.

LOAD

The LOAD service routine is entered by
the SVC SLIH when a LOAD macrc instruction
is issued. LOAD searches the loaded pro-
gram list for the RB of the requested
routine, and if it finds it, increments the
use count and passes the requested rou-
tine's entry point to the issuer in regis-
ter O. LOAD branches to the terminal
portion of LINK that issues the SVC EXIT
instruction.

If the requested routine is not found on
the loaded program list, LOAD branches to
FINCH to load the routine into storage. On
return from FINCH, LOAD initializes the
requested routine's RB and places it on the
loaded program 1list, sets the RB's use

count to one and branches to LINK to issue
the SVC EXIT instruction.
If the resident access method (RAM)

option was selected during system genera-
tion and the name of the requested routine
is prefixed by IGG019, LOAD searches the
RAM system load list first. If the RB of
the routine is found there, the use count
is not incremented and the entry point of
the routine is passed to the wuser in
register O. If +the RB of the routine is
not found in the syster 1load 1list, ILOAD
searches the loaded program list and pro-
ceeds as previously described.

XCTL

The XCTL service routine is entered Ly
the SVC SLIH when an XCTL macro instruction
is issued. °

If the XCTL macro instruction was issued
by an SVC routine operating in the SVC
transient area, the XCTL service routine
ktranches to FINCH to locate the routine on
the SVC 1library and bring it into the
transient area. XCTL kranches to that part
of LINK that completes the initialization
of the RB and executes an svcC EXIT
instruction.

XCTL mwacro instruction was not
transient SVC 1routine, XCTL
dequeues the issuer's RB and its minors
from the active RB queue. The routine
which issued XCTL and its RB are removed
from main storage (unless the routine was
LOADed) .

If the
issued by a

If the requested routine is on the
loaded program list and is not active, XCTL
kranches to LINK to:

e Set the active bit in the RB for the
requested routine.

Chapter 4: Ccntents Supervision 35

e Queue the RB on the active RB queue.

e Issue an SVC EXIT instruction.

If the RB of the requested routine was
not found inactive on the 1loaded program
list, XCTL branches to FINCH to bring the

routine into main storage. On return from
FINCH, XCTL initializes the routine in the
same manner as if its RB had been found
inactive on the loaded program list.

If the resident type 3 and 4 SVC routine
option was selected during system genera-
tion and an XCTL macro instruction was
issued by a type 3 or 4 routine, the XCTL
routine checks the RSVC system load list tc
determine if the requested routine is resi-
dent or requires loading.

IDENTIFY

The IDENTIFY service routine is entered
by the SVC SLIH in response to the issuance
of an IDENTIFY macro instruction which is
an option in the fixed-task environment.

IDENTIFY builds and initializes a minor
request block to describe a routine speci-
fied in the parameters of the IDENTIFY
macro instruction, and chains this minor to
the 1loaded program 1list and to the RB of
the routine which contains the identified
routine. IDENTIFY returns to the issuer by
issuing an SVC EXIT instruction.

DELETE

The DELETE service routine is entered by
the SVC FLIH when a DELETE macro instruc-
tion is issued. The DELETE routine decre-
ments the use count in the RB of the
routine specified in the parameters of the
DELETE macro instruction. If the use count
reaches zero, DELETE dequeues the routine
from the loaded program list and issues a

FREEMAIN macro instruction to release the
storage occuried by the specified routine
and its RB. On return from FREEMAIN,

DELETE repeats the deleting process for any
minors belonging to the specified routine.
DELETE returns by branching to the type 1
SVC exit.

36

If the RB of a routine is found in the
resident access method (RAM) system load
list, the use count is not decremented by
DELETE and the FREEMAIN macrc instruction
is not issued.

SYNCH

The SYNCH service routine is entered by
the SVC SLIH when a SYNCH macro instruction
is executed. SYNCH uses GETMAIN to oktain
32 bytes of main storage from the lower end
of the dynamic area for the creation of a
PRB. The PSW in the PRB is initialized by
SYNCH to address the location specified in
register 15 by the issuer of the racro
instruction. SYNCH sets the PSW completely
enabled in problem program mode, with the
protection key recorded in the task control

klock. After the PRB 1is created and
initialized, SYNCH queues it on the active
request block queue Lkelow the SVRB for

SYNCH, and returns by issuing an SVC EXIT

instruction.

FINCH
The FINCH service routine is a cormcn
subroutine. It is entered by a branch from

seven other system routines and it returns
to them by a branch. The seven service
routines which branch to FINCH are:

e ATTACH e SVC SLIH

e LINK e EXIT EFFECTOR

e LOAD e EXIT

e XCTL

FINCH uses the data management BLDL

routine to 1locate a named routine cn an
external storage device. Using the infor-
mation provided by BLDL, FINCH initializes
the program fetch parameters and uses the
program fetch routine to bktring the speci-
fied routine into main storage. FINCH
allows for necessary RBs when issuing
GETMAIN, and initializes them with the RB
type and the size of the storage space they
and their routines occupy.

Program fetch, a part of the resident
nucleus, places into main storage 1load
modules obtained from the system library or
any other 1likrary organized as a parti-
tioned data set. Program fetch is reenter-
akle; that is, it can be used concurrently
by more than cne task. The module name of
program fetch is IEWFTMIN.

* Prcgram Ccntrolled Interrupt (PCI) fetch
is an optional program fetch module that
can ke used in place of IEWFTMIN. The
module name of PCI fetch is IEWFTPCI.
Either IEWFTMIN or IEWFTPCI is selected
during system generation. PCI fetch im-
proves performance on some System/360
models by requiring only one revolution of
the disk to place the contents of one track
into main storage.. The differences between
standard prcgram fetch (Chart 09) and PCI
fetch (Charts 09 and 10) are pointed out in
notes throughout the chapter.

Program fetch has two entry points.
Contents supervision passes control to pro-
gram fetch ky branching to IEWMSEPT, over-
lay supervision passes control to program
fetch by branching to IEWFBOSV.

A load module is placed into main

storage using block loading, which places
an entire 1load wmwodule into a contiguous
main storage area. IEWFTMIN and IEWFTPCI
operate in klock loading mode only. Stan-
dard program fetch requires one revolution
of the disk for each RLD record read.
Standard fetch waits for channel end so
that it can begin any necessary relocation.
When it has completed relocation, standard
program fetch issues another EXCP to read
the next RLD and/or text record.
Note: PCI fetch reads in the RLD and/or
text record and then, rather than waiting
for channel end to occur, it uses a PCI
appendage toc allow the channel program to
read the mnext RLLC and/or text record into
another kuffer. The PCI arpendage gives
control to the relocation subroutine which
performs any relocation that is required on
the contents of the previous buffer while
the next buffer is being filled. This
improved performance assumes:

e That a buffer is always availakle for
RLD records to be read into.

e That no
execution.

errors occur during I/O

e That no cylinders are crossed while the
program is being fetched.

CHAPTER 5: PROGRAM FETCH

e That the speed of the CPU allows the
PCI appendage to change a CCW from a
NOP to a TIC to the next channel

program before the

that CCW.

channel picks up

PROGRAM FETCH FUNCTIONS

Program fetch performs the following
specific functions:

e Initialization. Performs initializa-
tion procedures to prepare for the
loading of a module.

e Loading. Reads text records and RLD
records of a 1load module into main
storage.

e Relocation. Adjusts values of address
constants to reflect the relocation of
a module that has been loaded intoc main
storage.

e Termination. Performs termination pro-

cedures after a module has been loaded
into rain storage.

PROGRAM FETCH CONTROL FLOW

Program fetch receives control from con-
tents supervision when either a LINK,
ATTACH, LOAD, or XCTL macro instructicn is
issued and a usable copy of the module
specified is not in main storage. When
contents supervision requests a klock
module, program fetch 1loads the entire
module. A load module with the scatter
attribute is block loaded. When an overlay
module is requested, only the root segmrent
is loaded.

Program fetch receives control from
overlay supervision when a segment of an
overlay program specifies another segment

that is not in main storage either by a
kranch or by issuing a SEGWT cor CALL macro
instruction. After receiving control from
overlay supervision, rrogram fetch 1lcads
the requested segment.

If Main Storage Hierarchy Suprort is
included in the system, the loading of
relocatable units of a program can be
directed into hierarchy 0 or hierarchy 1 or
into koth hierarchies ky the use of the
linkage editor hierarchy loading attrikute
(HIARCHY=). The loading of overlay struc-

Chapter 5: Program Fetch 37

ture programs can be directed into either
hierarchy, but load segments of the same
overlay program cannot be loaded into dif-
ferent hierarchies. When no hierarchy is
specified, the overlay structure exists in
hierarchy 0.

The initialization procedures shown in
Chart 09 are performed each time program

fetch begins execution. Control then
passes to the loading routine, which reads
in the module. Relocatable address con-
stants embedded in text recorxrds are
adjusted by the relocation routine. Con-

trol passes ketween the loading routine and
the relocation routine until the entire
segment or module is loaded and relocated.
Termination procedures are then performed
and control is returned to the caller.

Note: PCI fetch performs relocation asyn-
chronously with its input/output execution.

Byte
— 1
0] CHPG1 -Channel Program |
| (7 double words) |
| r T i
32| | ECB | IOB |
| | (1 word) | |
t L t 1
64| IOB -Input/Output Block | IOBSKBUF |
| (8 words) |IOB Seek|
i 4]
T T T 1
96| Buffer |SEEKBUF -Fetch Seek| |
| (2 words) |Buffer (3 words) | |
L 4L J i}
v r 1
128| REGSAVE -Register Save Area |]
| (10 words) | |
L J I

3
160 | |
I |
| |
192| |
I !
| I
224 | RLDBUF |
| |
| Relocation Dictionary Buffer |
256 |
| (64 words) |
| I
288 | |
| |
| I
320] |
I I
| |
352 |
| I
| |
384 |
| I
L -

Figure 11. Program Fetch Work Area

38

T
|Relocation factor for module

1

Number

- — e —

T
| Concatenation
I
1

|TTRO - relative (to keginning of data
| set) disk address of segment 1
L

v

|TTRO - relative (to keginning of data
|set) disk address of segment 2

L

e e

r

|TTRO - relative (to keginning of data
| set) disk address of segment N

L

e ——

Concatenation Numker - This a value
specifying this data set's sequential
position within a grcup of ccncate-
nated data sets.

Figure 12. Note List (in Main Storage)

INITIALIZATION

Contents supervision
fetch with the following parameters (see
prograr 1listing for contents of general
registers and fetch parameter list):

suprlies rrcgram

e Main storage address of applicable par-
titioned organization directory record.

® Main storage address of an opened data
control block (CCB) to ke used while
loading the module.

e Main storage address of the work

to be used (see Figure 11).

area

e Main storage address of area into which
NOTE 1list 1is tc be read for overlay
programs (see Figure 12).

e Main storage address at which to
loading the module.

begin

e Return address in general register 14.

Overlay supervisicn sugplies
fetch with the following parareters:

prcgram

e Main storage address of the data con-
trol block (DCB) previously used to
read in the root segment.

e Main storage address of the note list
(loaded before the root segment).

e Main storage address of a work area for
use by program fetch.

Note: The work area for PCI fetch
within the PCI program.

is

» Segment number of the requested segment

multiplied by 4.

e Return address in general register 1u4.

After receiving control,

uses the parameters

Parameter

I

|

L

| List
|

L

Block Modules

program fetch
supplied to kuild an

input/output block (IOB), an event control
block (ECB), and a channel program (CCW
list) in the specified work area. The
channel program is used to read in the
program, and if necessary, the note 1list
containing the relative disk addresses of
the overlay module's segments. Figure 13
shows the relationship of the blocks and
takles used by program fetch to load block
and overlay modules.

r
| DCB (for library

b—————) ECB

r

.
|
|
|
L

Record

1]
PDS Directoryp-—————--—9 |eccceccccccccasal
|

r——¥| containing program
| | being loaded)

b e e e e

—

r
L——p| Channel Programs

T

.Direct-Access. |
|e..Deviceeeea..

| leeeecnccanacann
L

Program Block Module

@ececsccccccco e

e Y
SR EAp S Sp——

Cverlay Modules

r -1
| Legend |
| specifies]
| ————> a pointer|
L J

@eeecscvcscccscscae

|
| .Direct-Access.
|ee...Device....

S S ——

Overlay Module

(o et o e o e e e e e o e e e . e e e e e

e e e e s . e e e i s ke e e s s s o s e e s . o

Figure 13. Rlocks and Takles Used by Program Fetch

Chapter 5: Program Fetch 39

r L 1 r LI LI & 1 T 1 T 1
Record 1		Record 2		Record 3		Record 4		Record 5		Record 6		Record 7
Control		Text		Control		Text		RLD		Control-RLD-		Text
1 [1 I		End-of-seg.										
20 bytes		500 bytes		20 bytes		1024 kytes		260 bytes		200 bytes		15 kytes
-4 L J L 4 L J L J L J L J
Figure 14. Typical Load Module (Logical Forrat on Direct-Access Device)
Note: ©PCI fetch builds three channel pro- These records are of variakle length.

grams in the PCI fetch work area.
area also contains
tionary buffers.

The work
three relocation dic-

LOADING
A load module (Figure 14) consists of:
1. Control reccrds,
2. Text records,
3. RLD recorxds,

4. Control and RLD records.

Their formats are shown in Appendix D.

After control is received from contents
supervision, program fetch obtains the
length and the relative disk address of a
module's first text record from the rparti-
tioned organization directory record (see
Appendix D). Subsequent text records are
read using the length given in the control
record preceding each text record. Cne or
nrore records containing RLD information
will follow a text record that has ewkedded
relocatable address constants. Program
fetch wuses the RLD informaticn to find and
adjust the values of the address constants.

When lcading a block or overlay module,
program fetch alters the mcde of its chan-

r T T L]
	Number of Records	Source (if any) of Record Length
Condition	Read With Each	and Relative Disk Address (TTR),
	EXCP Issued	if not reading sequentially
b t = + - 1		
	Standard	PCI
	Fetch	Fetch
Normal first EXCP for all b + { Partitioned Organization Directory		
modules including root	2	reads
segment of overlay modules		all
		records
		connected
Normal Mode	2	with
		the
[1cad	
First EXCP for a segement 11	module	NOTE list provides relative disk
EXCP for a NOTE list	1	11
EXCP to read a control 11	nct arpli-	None
and/or RLD record that pre-		cakle for
viousliy caused an incorrect		PC1
length input/cutput error		
Previous record was RLD only		nct appli-
(did not contain control	11	cakle for
information)		PCI
I		
EXCP for a module that con-		
sists of one text record and	1	1
no RLD reccrds		
Last record of the module is		not appli-
a text record	11	cakle for
		PCI
L L L 1 J

Figure 15.

40

Conditions Affecting Channel Prcgram Mode

P

nel rrogram according to the type and
sequence of records contained in the module
(see Figure 15). The normal sequence of
records in a module is: control informa-
tion - text record - control information -
text record. Two records are read at a
time as 1long as the normal sequence -- a
text record followed by control information
-- is encountered. When the second of the
two records read in the normal mode does
not contain control information, program
fetch alters the mode of the channel pro-
gram so that a subsequent EXCP nacrc
instruction causes a single record to be
read. Each record read singly is checked
for control information. If present, pro-
gram fetch restores its channel program to
the normal mode. Text records are read
into their assigned main storage location;
RLD records are read into the RLD buffer.

As program fetch 1loads a module, it
reads the count record preceding each data
record into the fetch seek buffer. The
channel program's search command specifies
the last count record read. This is the
count record that precedes the 1last data
record that was read. When the count
record specified by the search command is
found, a subsequent read count, key and
data cormand will result in skipping the
data record that followed the count record
and will begin reading at the next count
record, as shown in Figure 16.

Note: For PCI fetch, the search command
specifies a count record and the subsequent
read begins with the data that follows that
count record. See Figure 16.

Program fetch causes a single record to
be read by turning off the command chaining
bit in the first read CCW of the channel

Note: For PCI |
fetch, a search|
for this count |

will result in a
subsequent read
of data starting

Frogram when
tions occur:

either of the following condi-

e The last text record of a module is to
be read (indicated by the setting of
the end-of-segment bit in the preceding
control record).

e A module to be 1loaded consists cf a
single text record without any RLD
information following it (indicated by

the module's attributes in the PDS
directory).
Overlay Modules

When an overlay module is 1loaded, its

NOTE 1list is first read into main storage.

The root segment is then read into wmain
storage using normal block loading
procedures.

While an overlay program is keing

executed, the NOTE list which contains the
main storage address of the SEGTAB and the
relative disk addresses of the module's
segments, remains in main storage.

After the root segment has been 1loaded
the SEGTAB is initialized. Program fetch
inserts, into SEGTAB, the main stcrage

address of data control block (DCB) and the
NOTE 1list, and if required, sets the TES-
TRAN indicator.

root
disk
the

To read in a segment other than the
segment, program fetch uses a relative
address found in the NOTE list to read
first control record of the segment. The
information in the ccntrol record is wused
to begin reading in the segment in the
normal mode.

record | here.
v
Count Data Count Data Count Data Count Data Count Data Count Data
T7T T7T 77T T 77 T1r——T"7T T 1T 77 T7717T 77
| I T I 11 | | [I |
| |Control}l | | | Text | | | |Control| | | | Text | | | |Control|l | | | Text
|| [[[I I I
1L i N L1 L1 11 11 141) I L1 1L oLl
|) |t
| | |1
t b 1
Previous EXCP | |
|
A search for will result in a
this count subsequent read
record count, key and data
starting here.
Figure 16. Typical Load Module (Physical Fcrrat on Direct-Access Device)

Chapter 5: Program Fetch 41

End-of-Extent Arpendage

A load module may reside in one or more
extents on a direct-access device. The
boundaries of these extents are specified
in the data extent block (DEB) for the
library containing the module being loaded.
When an EXCP macro instruction is issued
that results in crossing one of the extent
boundaries within which a portion of the
module being loaded resides, the input/
output supervisor passes control to program
fetch's end-of-extent aprendage. The
appendage acquires the beginning extent
boundary for the next portion of the load
module from the DEB, places it into the
unit control block (UCB), and returns con-
trol to the input/cutput supervisor.

Input/OQutput Errors

All input/output errors are handled by
the I/0 supervisor, except incorrect length
errors occurring while reading control and/
or RLD records.

Note: For PCI fetch, all input/output
errors are handled by the I/0 supervisor.

Normally, an incorrect length indication
is expected when reading control and/or RLD
records, since they are variable length and
their specific length is not known in
advance. After reading such a record with
a maximum possible count (256 bytes), pro-
gram fetch examines the content of the
record to check that what was read was of
correct length. If this check fails, pro-

gram fetch makes one more attempt to read
the record, this time with the exact
expected count. If the attempt to reread

fails, control is given to the caller and

an error code is passed.

RELOCATION (ADJUSTING ADDRESS CONSTANTS)
Program fetch adjusts address constants

by adding (or suktracting) a relocation

factor to (or from) the address constant's
value that is embedded in the load module.

42

When a module 1is block 1loaded, its
relocation factor is the difference Lketween
its linkage editor assigned address, which
is always zero, and the first byte of main
storage into which the module is to be
loaded. For example, assume a module is to
be 1loaded into main storage beginning at
address 4000. If the RLD flag bit is
positive a relocation factor of +4000 is
added to the relocatable address constant.
If, however, the RLD flag bit is negative,
the relocation factor is subtracted from

the address constant (see Appendix D for
RLD entry format). The 1linkage editor
assigned address of every relocatable

address constant is given by the relocation
dicticnary (RLD).

Address constants in the root segment of
an overlay module are adjusted in the same
manner as those 1in a block module. The
root segment's relocation is used to adjust
the address constants of all segments of
the module since an overlay module is

essentially block loaded. The relocation
factor is stored in the NOTE 1list by
program fetch and is available thrcughout

the execution of the overlay module.

TERMINATION

When a block module or the root segment
of an overlay module has been loaded,
program fetch computes the relocated entry
point of the module and rlaces it in the
fetch (parameter) 1l1list. When a root seg-
rent of an overlay module is 1loaded, pro-
gram fetch also inserts the main stcrage
address of the data control block (DCB) and
the NOTE 1list intoc the segment takle
(SEGTAB) .

To specify a successful or unsuccessful
loading, program fetch passes the aprrorri-
ate termination code to its caller. Con-
trol dis then returned to the caller via a
kranch to the address in the 1link/return
register.

ez

The overlay supervision service routines
control the 1loading of overlay rrogram
segments and assist the flow of control
between the segments of an overlay program.
While performing these functions, these
routines place data into and use data from
the segment table (SEGTAB) and the entry
tables (ENTABs).

Because the segment and entry takles are
part of each overlay program, the overlay
supervisor 1is reenterable and its services
can be used concurrently by many overlay
programs.

During execution, an overlay program
issues requests for segments. The requests
can be explicit via a SEGLD or SEGWT macro
instruction or implicit via a branch that
is routed through an ENTAB. In either
case, the overlay supervisor receives con-
trol from the SVC handlexr and checks the
SEGTAB to determine whether the requested
segment is in main storage. If not, the
overlay supervisor requests program fetch
to load the segment. When this segment is
part of an overlay program that is being
tested, the overlay supervisor also passes
control to the TESTRAN interpreter.

Program fetch and the TESTRAN interpret-
er each return control tc the overlay
supervisor after their functions have been
performed.

SEGLD is not supported in this configu-

ration; a SEGLD request is treated as a NOP
instruction.

TABLES USED BY OVERLAY SUPERVISION

The segment table (SEGTAB) and the entry
tables (ENTABs) that contain the data used
by the overlay supervisor are created by
the linkage editor from information in the
relocation dictionary (RLD) and the user's
control statements.

Figure 17 shows the SEGTAB and ENTABs in
a typical single region overlay structure;
the ENTAB and SEGTAB formats are given in
Appendix F.

USE OF SEGMENT TABLE

The segment table (SEGTAB) contains data
that describes the structure and status of
an overlay module, and is a directory for
the segments of that module. It contains

CHAPTER 6: OVERLAY SUPERVISION

| SEGTAB |
l___
| |
| |
| |
| TEXT |
| |Root Segmrent
| | (Seg 1)
| |
- ==
| ENTAB |
L 4
r T T 1
ANRRR RN R R RR RN RN RRR AR RN RERY
k e 4
| | | |
| | | |
| | | |
| TEXT | | TEXT |
| |seg 2 Seg 5| |
| | | |
- - =1 | |
| ENTAB | | |
L L
r | v 1 l l
RERRRRRRRR R RN RRRRRRRRRRRER | |
t + + i | |
| | | | | |
| | | | | |
| TEXT | | TEXT | | |
| |Seg 3 | |Seg 4 | |
| | | | | |
| | | | | |
| | | | | |
bt 4 | | | |
| | | |
| | | |
| | b il
| |
| |
|
Figure 17. Single-Region Overlay Structure

both fixed and variable information. The
fixed inforwmation includes:

e TEST indicator. This indicator is set
by program fetch if the partitioned
organizaticon directory record indicates
that the program is being tested under
TESTRAN.

e Last seqment number of each regicn.
This value defines the segment that
ends a region and is used to deterrmine
the region that contains a particular
segment.

e Previous segment numker of each segment
in the module. The overlay supervisor
uses this field to determine the addi-

Chapter 6: Overlay Supervision 43

tional segments that must be loaded
with the requested segment. (These
additional segments are those in the
path of the requested segment.)

The variable information includes:

e Pointers. These pointers are addresses
of the NOTE list and DCB.

e Highest number segment of each region
in main storage. This value 1is ini-
tialized to 1 for the first region by
the linkage editor.

e Status indicator for each segment. The
overlay supervisor sets a status indi-
cator for each segment to indicate
either that the segment is not in main
storage, that the segment is being
loaded into main storage, or that the
segment is present in main storage.

For more information about the SEGTAB,
see Arpendix F.

USE OF ENTRY TARLES

The entry tables (ENTABs) assist in
passing control between the overlay super-
visor and an overlay program. They handle
downward branches in an overlay program,
that is, the branches to segments lower in
the path.

When the overlay program executes an
upward branch, the overlay supervisor is
not entered, and the ENTABs and SEGTAB are
not used. An upward branch is direct
because segments in the path are always in
main storage (Figure 18).

Branching to a Segment Not in Main Storage

When an overlay program Lranches to a
segment not in main storage, control is
passed to the applicable ENTAB (step A of
Figure 19). The branch instruction in the

ENTAB passes control to an SVC instruction
contained in the first field of the last
ENTAB entry (step B). The SVC instruction
causes an SVC interruption, and passes

control to the SVC handler and then to the
overlay supervisor (step C). The overlay
supervisor uses a pointer in general
register 15 to obtain the information
required to:

e Determine the number of the
segment from the ENTAB.

requested

e Determine the status of the requested
segment from the SEGTAB.

4y

e Pass control to the requested segrment
at the entry point specified by the
address of the entry point field in the
ENTAB.

After the segment is loaded, control is
returned to the second field of the last
ENTAB entry, the instruction following the
SvC (step D). When the locad and kranch
instructions have been executed, control is
passed to the correct entry point.

1 I
| SEGTAB |
| |
L J
RI 1
O | SEG1 CSECT |
o | ENTRY EASY |
T | - I
| L 15,ADCON1 |
S | BR 15 |
E | . |
G | . |
| - |
r——>| EASY SR 1,1 |
| | . |
[. |
] | . |
| | ADCON1 DC V(FOX) |
| I . I
I . |
| | . |
I L J
|
|
I r T T T 1
| |B DISP |ADDRESS|SEG NO. | |
| | (15,0) |of FOX |of FOX | |
IEL 1 4 4 J
| N
| T |
| A
IBT T T T T 1
| |svC 45|L 15,4(0,15) |BR 15 | | |
| | | | | | |
l L 1 L 1 i J
|
I
I r -
| | SEG 3 CSECT |
| | . |
| I . |
I | . [
| | L 15,ADCON2 |
L + BR 15 |
| . |
| . I
| . |
| ADCON2 DC V (EASY) |
| . |
| . I
L J
Figure 18. Overlay Program Upward Branch

PN

| i
| SEGTAB |
| |
L 3
R ¢ 1
O | SEG1 CSECT |
) o | ENTRY EASY |
T | L 15,ADCON1 |
eceeceses|ecsescasaecs BR 15 |
. S | . |
. E | . |
. G | EmsY SR 1,1 |
Step A | . |
. | ADCON1 DC V (FOX) |
L]
* r T T -
eeesee...p| B DISP(15,0) Address of |Seg.no. | |
| FOX |of FOX | |
E L L 1 -
N .
T | ...Step B.... |
A -
Br Y T T T T 1
eeeesStep Ceceeeaeeas| SVC 45|L 15,4(¢(0,15) | BR 15 | | Address of SEGTAB |
- L L‘ 1 L L J
v . .
S — 1 . .
|Overlay |eoeecceeeStep Decececeann .
| Supervisor | cecccsccvccsccsscs
L___1$_____J .
. r 1
| . | SEG3 CSECT |
. | . |
r———4t‘----1 . | : I
| Program | Step E | L 15,ADCON2 |
| Fetch | . | BR 15 |
—————————— . | . |
. | . |
. | ADCON2 DC V(EASY) |
__________ 1 . L J
SEG2 CSECT .
| ENTRY FOX | .
| FOX AR 1,2 |gecccceccccccacann XXXX XX XXX XXX XXX XXX X XXX XXX XXX XX XX
. X X
| » | X <....p Shows control flow X
. X X
L e e e == - - = 4 XXXXXXXXXX XX XX XXX XX XXX XXX XX XXX XX
Figure 19. Branch to Segment not in Main Storage
Branching to a Segment in Main Storage instruction in this field causes general
register 15 to be loaded with the wmain
When a segment is 1loaded into main storage address assigned to the indicated
storage, because of an implicit call (a symbol. A branch to that location is then

branch through an ENTAB), the displacement
(DISP) field in the ENTAB entry through
which the branch was routed is increased by
2 (Figure 20). When the overlay program
executes another branch to this ENTAB
entry, the SVC instruction is bypassed, and
contrcl is given to the second field of the
last ENTAB entry. Execution of the

executed.

A caller is an ENTAB entry that assisted
in routing a branch from a segment to an
entry point in a segment lower in the path.
ENTAB entries that have been modified to
bypass the SVC instruction are chained
together in a caller chain (Figure 21).

Chapter 6: Overlay Supervision 45

o —

b e e e

SEGTAB
r -
R | SEG1 CSECT |
o | ENTRY EASY |
o | . |
T | L 15,ADCON1 |
cececse|eecececees BR 15 |
. s | . |
. E | . |
. G | EASY SR 1,1 |
. | . |
o | . |
. | aDcoN1 DC V (FOX) |
L J
. r T T T 1
ees.--p| B DISP(15,0) | Address of | Seg.no. | |
| | FOX |of FOX | |
E L 4 1 L J
N .
T cecccse
A .
B \ 4
r T T T H H
| svC 45|L 15,4(0,15) | BR 15 | | Address of SEGTAR |
L L 41 1 i -4
| Overlay | .
| Supervisor| .
R —— 4 .
r 1 .
| SEG2 CSECT | .
| ENTRY FOX| .
| . | .
| FOX SR B3,U|gecccccccccccannne
| . |
I . I
| . [
L J
Figure 20. Branch to Segment in Main Storage
These entries are chained only if the OVERLAY SUPERVISION ROUTINES

called and calling segments are located in
the same region. Chaining is accomplished
by placing a pointer to (address of) the
modified ENTAB entry into the caller field
of the SEGTAB when the segment is brought
into main storage. If this segment is
requested again, the contents of the SEGTAB
caller field (a pointer to a previous
caller) is rlaced into the previous caller
field of the referred to ENTAB entry, and a
pointer to this ENTAR entry is placed in
the «caller field of the SEGTAB. In this
way, a chain is created that begins at the
SEGTAB entry and points to all the ENTAR
entries (in the same region) that were
modified (+2) to bypass the SVC 45 instruc-
tion. When the segment is to ke overlayed,
the caller chain is used to reset all of
the modified ENTAB entries in the chain.

46

Overlay supervision is composed cf a
resident module called overlay supervisor 1
and either of twc non-resident wodules
selected during system generation called
overlay supervisor 2.

The wocdule name of overlay supervisor 1
is IEWSVOVR; the module name of overlay
supervisor 2 is IEWSYOVR for the kasic
synchronous module or IEWSXOVR for the
basic synchronous module with ofticnal
SEGWT checking. To pass control to either
version of overlay supervisor 2, overlay
supervisor 1 issues a LINK macro instruc-
tion that specifies IEWSZOVR, which is the
nenber name of the selected mcdule in the
LINKLIB.

OVERLAY - SUPERVISION CONTROL FLOW

The
points:

resident module has two entry
IGC037 and IGCO45. The SVC han-
dler passes control to IGC037 as a result
of an SVC 37 instruction (SEGWT macro
instruction), or to IGCO45 as a result of
an SVC 45 instruction (an intersegment
kranch that 1is routed through an ENTAB).
An SVC 37 instruction with zero in general
register 0 specifies a SEGLD macro instruc-
tion, whereas a one in general register 0
specifies a SEGWT macro instruction.
(SEGLD is treated as a NOP in a single-task
environment.) Chart 11 shows overlay
supervisor control flow.

Overlay
resident
system.
initialization

supervisor 1 is permanently
in the nucleus of the operating
It performs the first portion of
and then 1links to overlay
supervisor 2. When control is returned to
overlay supervisor 1, it performs the
remaining termination procedures and issues
an SVC EXIT instruction.

When a requested program is an overlay
program, contents supervision issues a LOAD
macro instructicn to bring overlay supervi-

sor 2 into main storage. Overlay supervi-
ENTAB - Segmrent N
r T T 1
First | | | |
Caller of | +2 | | 0 ¢ ————
Segment 2 | | | |
| I I |
IR 1 Il 4
v T T 1
| | | !
| | | |
L 1 IR N
v T 1 2|
| | | |
| | | |
L 1 4 4
v T T 1
Third | +2 | | Address ¢—-—
Caller | | | -
-t $ i1
| | | I
| | | [
1 4 1 4 I
v T T |
Second 1 +2 | | Address -4
Caller | | | b———-
L + 1]
v T T 1
Fourth | +2 | | Address p————-
Caller | | | ¢
L L 1]
Figure 21. Chaining of ENTAB Entries

e s e o e e e s e

Used to Branch to

sor 2 remains in main storage for the
duration of the task that required it.
When given control by overlay supervisor 1,
overlay supervisor 2 performs the remaining

initialization procedures, loads the
requested segments, updates the segment
table (SEGTAB) and entry tables (ENTABs),
performs some termination procedures, and-
then returns control to overlay supervisor
1.

INITIALIZATION

During linkage editcr processing, if the
address constants of a segment are resclved
to an ENTAB, the numker of the segment is
placed in the high-order bLyte of the
address ccnstants. The V-type address con-
stants that are not resolved to an ENTAB
contain a zero in their high-order bytes.
The address constants can be the result of
an expansion of a SEGLD, SEGWT, or CALL
macro instruction, or the result of the
user creating an address constant for wuse
with a branch instruction. If a SEGLD or
SEGWT request is received and the high-
crder byte of the V-type address constant
is zero, the request is treated as a NOP.

SEGTAB

| |
'f T) “ll
| | | |
- | 0] | |
| | | |
1 + i
——————— 4 | Address of last | |
] 1 | caller cf segment | |
| | 2 | |
t-——+ + .|
| | | |
| 1] |]
| | | |
L 1 L J

a Ségment

Chapter 6: Overlay Supervision 47

The overlay supervisor obtains the seg-
ment number of the requested segment from
the "to segment number™ field in the ENTAB.
The overlay supervisor obtains the address
of the SEGTAB from the last entry in the
ENTAB, and checks the SEGTAB to determine
the segment's status and relationship to
the overlay structure.

The basic synchronous module with
optional checking (IEWSXOVR) detects over-
lay requests that would causée the request-
ing segment to be overlayed. This module
checks only those requests that result from
the execution of a SEGWT macro instruction.

UPDATING TABLES

Before segments are loaded, the overlay
supervisor updates the SEGTAB and ENTABs of
the overlay program to reflect the changes
to be made in the overlay structure present
in main storage. For each segment that is
logically overlayed, a status indicator is
reset in the SEGTAB. The SEGTAB is scanned
to find the caller chains (Figure 19),
which are wused to reset the ENTAB entries
to their original state (the state before
the segment containing the corresponding
entry point was loaded into main storage).
The ENTAB entries are reset by subtracting
+2 from the displacement field of the
branch. When the SEGTAB and ENTAB entries
of the last segment have been updated, the
segments are loaded.

48

SEGMENT LOADING

During segment 1loading, the overlay
supervisor scans the SEGTAB to deterrine
which segments are needed and directs pro-

gram fetch to load the requested segment
and all segments in its path that are not
in main storage.

TERMINATION

The overlay supervisor checks the TEST
indicator in the SEGTAB to determine if the
overlay program is "under test®™. If under
test, a LINK macro instruction is issued
specifying the TESTRAN interpreter. After
TESTRAN interpreter execution, control is
returned to overlay supervisor.

If the overlay supervisor was entered
via an SVC 45 instruction (through an
ENTAB), and the ENTAB through which the

request was routed is in the root segment
or 1is 1in the same region as the requested
segment, the caller chain is updated
(Figure 19) and the address field of the
branch is altered in the calling ENTAB. If
the requesting and requested segment are
not 1in the same region, the caller chain
and the branch instruction in the ENTAB are
not altered. Subsequent branches to an
altered ENTAB entry are routed directly to
the segment. Control is returned to over-
lay supervisor 1.

The time supervision service routines
are an optional feature of the fixed-task
supervisor for installations that have

selected the hardware timer as a
their Computing System/360.

rart of

Time Supervision processes:

1. TIME macro instructions--
requests for the date and time of day.

2. STIMER macro instructions--
requests to establish an interval to
ke timed.

3. TTIMER macro instructions--
requests for the time remaining in a
previously established interval, or
requests to cancel a previously estab-
lished interval.

Time supervision also maintains a queue of
pending time requests and waintains the
relationship between the actual time of day
and the hardware.

TIME SUPERVISION ROUTINES

Time supervision includes the following
service routines: timer second level
interruption handler (SLIH), STIMER, TIME,
and TTIMER.

The timer SLIH handles
interval expirations, including those of
the control program, and maintains the
queue of time interval requests.

all types of

The STIMER service routine sets an
interval into a software interval timer,
specifies when that interval timer is to be
decremented and what action is to be taken
when an interruption signals completion of
the interval. It does these things in
response to an STIMER macro instruction.

The TIME service routine rlaces the time
of day in register 0 and the current date
in register 1, when requested through a
TIME macro instruction. The time returned
is the time of day based on a 24-hour clock
that is set with local time by the orerator
through the SET cormand.

The TTIMER service routine tests the
interval timer in response +to a TTIMER
macro instruction, and places in register 0
the time remaining in the TASK or REAL
interval previously set by an STIMER macro
instruction. The TTIMER service routine

CHAPTER 7: TIME SUPERVISION (OPTICNAL)

can also cancel previously specified inter-
vals.

THE TIMING ALGORITHM

Within the timer SLIH is a U4-byte field
called the 6-hour pseudo clock (SHPC). By
manipulating the values contained in the
SHPC and the hardware timer, time supervi-
sion maintains real +time while timing a
prespecified interval.

For example, assume that the 6-hour time
of day (TOD), defined as equal to the
contents of the SHPC minus the contents of
the hardware timer, is zero hours. A
request 1is received for a one hour inter-
val. This is acconplished by placing one
hour in the SHPC and in the timer.

SHPC - timer = 6-hour TOD
1 hour - 1 hour = 0 hour

After an hour, the contents of the timer
have automatically decremented to zero and
an interruption occurs.

SHPC - timer = 6-hour TOD
1 hour - 0 hour = 1 hour

If a 2-hour interval is requested, two
hours is added to the SHPC and two hours is
placed in the timer.

SHPC - timer = 6-hour TOD
(1 hour + 2 hours) - 2 hours = 1 hour

Two hours 1later, when the
occurs, the correct 6-hour
hours is indicated by the SHPC.

interruption
TOD of three

To correlate the internal, software
pseudo clock time with real time, two cther
pseudc clocks are maintained ky time super-
vision. One 1is a 24-hour pseudo clock
(T4PC). The other is a local time pseudo
clock (LTPC).

Each time the SHPC reaches six hours the
SHPC 1is reset to =zero and six hours is
added to TWPC. The TU4PC is reset to zero
each time 24 hours gass. The TU4PC is
initially set to zero at 1initial rrogram
load. The contents of the T4PC plus the
6-hour TOD is defined as the T4PC TOD.

The contents of the LTPC initially is
equal to the time keyed in at the conscle
by the operator through the SET command.
The 1local time of day which is returned,

Chapter 7: Time Supervision (Optional) 49

when requested, is computed by adding the
contents of the LTPC to the T4PC TOD.

The three Lkasic time relationships of
the timing algorithm are:

e The 6-hour TOD is equal to the contents
of the 6-hour pseudo clock minus the
contents of the hardware timer.

e The 24-hour TOD 1is equal to the con-
tents of the 24-hour pseudo clock plus
the 6-hour TOD.

e The 1local TOD is equal to the contents
of the local time pseudo clock plus the
24-hour TOD.

Time supervision maintains a queue
(Figure 22) of timer queue elements
(Figure 23) representing interval requests.
The timer queue is a two-way chain ordered
so that the request for the next interrup-
tion is at the top of the queue, while the
request for the last interruption is at the
bottom of the queue. To ensure that the
timer queue element is inserted at the
right place in the gueue when a new request
is received, the interval requested is
translated into a value that is relative to
the software clocks. This 1is done by
adding the value of the interval requested
to the 6-hour TOD. This new value is
placed in the TQVAL field of the timer
queue element and is used by the queueing
subroutine of the timer SLIH to position
the element on the queue.

| SHPC = 6-Hour Pseudo Clock

O

24-Hour Pseudo Clock

N

| T4pC = |

| I]

- . 1

| LTPC = Local-Time Pseudo Clock |

I - 1

- - S .

| TQPTR = Pointer to Timer Queue ==
>t - 4]
| I
I r - 1 <-4
L——4 6-Hour Element b1
—>t- 4
| |
| r K X <-4
t——{ Midnight Element |
>t - 1 |
| |
| <-4
L—— Pseudo Element |

| IS 4
Figure 22. Timer Queue

50

r T H 1
| Flags | TCB | Pointer |
| | Pointer | to Successor |
b . t 1
| Pointer | TQVAL = Time of |
| to Predecessor | Expiration (TOX) |
- S !
| PRB | Exit |
| Pointer | Pointer |
L L J
v 1
I |
| ' n
| Save Area for 16 Registers |
| |
I I
H ——-
Figure 23. Timer Queue Element (96 Bytes)
When the element reaches the top of the
queue, the interval placed in the timer is

calculated by subtracting the value of the
contents of the SHPC from the value of the
contents of the TQVAL field of the element.
The result of this subtraction is added to
the timer, while the unsubtracted value of
the contents of the TQVAL field c¢f the
element is placed in the SHPC.

At initial program load, two permanent

entries are placed on the timer queue
representing time supervision interval
requests. One is a 6-hour interval request

and the other is a request for an interval
that is calculated to cause an interrugtion
at midnight, local time. When the midnight
interruption occurs, time supervisor incre-
wents by one the day-of-the-year count
obtained from the operator's SET command.
When the six-hour interruption occurs, time
supervision updates the T4PC and decrements
by six hours the contents of the TQVAL
field in each of the elements in the timer
queue. In addition, a pseudo element is
placed at the end of the queue to mark the
queue's terminal point.

TIME SUPERVISION CONTROL FLOW

As shown in Chart 12, the flow of time
supervision is generally through two paths.
In the first path, control is received from
the SVC FLIH by cne of the three SVC
routines -- STIMER, TIME, and TTIMER.
STIMER and TTIMER interface with the timer
SLIH's queueing and dequeueing subroutines.
TIME and TTIMER return by branching tc the
type 1 SVC exit, while STIMER executes an
SVC EXIT instructicn. In the second path,
control is received from and returned to
the T/E FLIH by the timer SLIH by
kranching.

STIMER

The STIMER service routine sets up time
intervals, represented by timer queue ele-
ments, at the completion of which a timer/
external interruption will occur. When
entered, STIMER initializes the timer queue
element's fields. STIMER uses the queueing
subroutine of the timer SLIH to insert the
newly created timer queue element into the

timer gqueue. If a WAIT interval is
requested, STIMER executes an SVC WAIT
instruction.

TIME

The flow through the TIME service rou-
tine consists of testing the input parame-
ters of the TIME macro instruction for the
existence of the various options.

The time -- whether formatted in 26-
microsecond timer wunits, ten-millisecond
binary units, or packed decimal form -- is
always given in terms of local time of day
(LTOD). This is calculated according to
the formula:

LTOD = LTPC + T4PC + SHPC-timer

where LTPC is the contents of the local
time of day pseudo <clock, TU4PC is the
contents of the 24-hour pseudo clock, SHPC
is the contents of the 6-hour pseudo clock,
and timer is the contents of the hardware
timer at location 80.

The 1local time
register 0, and the
register 1.

of day is
day of the

placed in
year in

TTIMER

The TTIMER serxrvice routine determines
how much time remains in an interval
requested by a previous STIMER macrc

instruction, and cancels the interval if
the CANCEL parameter is present.

When entered, the TTIMER routine deter-
mines whether the interval has expired. If
it has, no action is taken. If it has not,
the time remaining in the tested interval
is returned to the user in register 0.
TTIMER tests for the cancel option and, if
it is present, TTIMER uses the dequeueing
sukroutine of the timer SLIH to take the
timer queue element off the timer queue.

TIMER SLIH-

The timer SLIH receives control from the
T/E FLIH when a timer interruption occurs.

The SLIH identifies the type of interval
that has expired and then satisfies the
specific requirement.

The SLIH removes the expired timer gqueue
element from the timer queue through one of
its two major subroutines (the dequeueing
subroutine) resets the hardware timer to
time the next interval on the queue, and
resets the SHPC. The action taken Ly the
SLIH after an expiration depends on the
interval type:

e If it is a WAIT tyre, the SLIH executes
the SVC POST instruction.

e If it 1is a REAL or TASK type, and an
exit address was specified, the exit is
scheduled through the Exit Effector
routine.

e If it is a 6-hcur time supervision
type, six hours is subtracted from the
TQVAL field of each tirer queue ele-
ment, and the 6-hour interval request
is queued again.

e If it 1is a midnight time supervision

tyre, the day-of-the-year count is

incremented by c¢ne and the midnight
interval request is queued again.

Queueing Subroutine

The queueing subroutine of the timer
SLIH is wused by the dispatcher, the SLIH,
STIMER, and by the SET command handler of
job management, to place a timer element on
the timer queue. The dispatcher uses the
routine when placing a task with a time
interval request in control of the CPU.

The queueing sukroutine converts the
absolute time interval in the element to a
relative time based on the 6-hour TOD. If
the interval is found to Le smaller than
the current interval on the queue, the new
smaller interval is added to the timer and
placed in the SHPC. If the interval is not
smaller, the correct insert point on the
queue is located for the element, which is
queued.

Cequeueing Subroutine

The dequeueing subrcutine is used ky the

dispatcher, STIMER, and TTIMER to remove
elements from the timer queue by frointer
ranigpulation. If the element was at the

top of the queue, control is passed tc the
SLIH, which resets the timer and SHPC.
Control is passed back to the caller Lty a
ktranch, at the completion of the dequeueing
subroutine, unless a kranch was made to the
SLIH, which returns control directly tc the
caller.

Chapter 7: Time Supervision (Optional) 51

CHAPTER 8: SYSTEM ENVIRONMENT RECORDING

System Environment Recording is a set of
control program routines which record and
in some cases attempt to reduce the effect
of machine malfunctions in System/360
Models 40, S0, 65, and 75. System Environ-
ment Recording handles two types of machine
malfunctions:

e Malfunctions of the central processing
unit (CPU), which cause machine-check
interruptions, and

e Malfunctions in a channel, which
input/output interruptions.

cause

There are two versions

Environment Recording:

of Syster

e System Environment Recording 0
and

(SERO) ,

e System Environment Recording 1 (SER1).
Either of these versions may be selected
when a system is generated for Models 40,
50, 65, or 75. If neither 1is selected,
either SERO or SER1 is used by default.
The version used by default depends on the
model (or models) specified, and on the
size of the system (see IBM System/360
Operating System: System Generation, Forrm
C28-6554) .

SYSTEMS WITHOUT SYSTEM ENVIRONMENT
RECORDING

When a machine malfunction (caused by a
CPU or channel malfunction) occurs on an
IBM System/360 model which does not have
System Environment Recording, the computer
is placed in a wait state (See Figure 24).
If the system is a Model 30, the operator
may then load the System Environment Re-
cording, Editing, and Printing (SEREP) pro-
gram. This program is described in IBM
System/360: General Programming Considera-
tions, Form Y20-0005.

ENTRY TO SYSTEM ENVIRONMENT RECORDING

When a machine-check interruption
occurs, the machine-check new PSW is load-
ed. This causes control to pass directly
to the System Environment Recording Routine
which was selected during system generation
(see Figure 24).

When an input/output interrupticn occurs
because of a channel error, the I/O new PSW

52

is 1loaded. This causes control to rpass to
the I/0 FLIH and then to the I/0 Supervi-
sor. The I/0 Supervisor enters the SER
Interface Subroutine which then 1loads the
machine-check new PSW (see Figure 24).

SER ROUTINES

versicn of
It deter-
malfunction and, if

SERO is the 1less complex
Systemr Environment Recording.
mines the type of

possible, writes a record on the S¥Sl.
LOGREC data set describing the error.
SYS1.LOGREC is located on the primary sys-

tem residence volume. If SERO cannot write
the record, the computer is placed in a
wait state and a message 1is printed re-
questing that the operator use SEREP. If
SERO can write a partial or complete rec-
ord, the computer is rlaced in a wait state
and a message is printed requesting that
the orperator reload the operating system.

SER1 is
System

the more complex version of
Environment Recording. It also
collects and writes machine environment
data, but in addition, it attempts to
associate the malfunction with the task
being executed. If the malfunction can be
associated with the task and if the control
program has not been damaged, the task is
abnormally terminated. If not, the comput-
er is placed in a wait state.

When the SYS1.LOGREC data set has Lkeen
filled, the operator runs the Environment
Recording Edit and Print (EREP) Routine.
This routine formats the SYS1.LOGREC rec-
ords and then writes these records cnto
printer, tape, or disk (according to user
specifications). EREP is described in IBM
Systemn/360 Operating System< Utilities,
Program Logic Manual, Form Y28-6614.

SERO

SERO collects, formats, and writes error
information after a wmwachine-check c¢cr a
channel error has occurred. See Charts 13
and 14. It is divided into two modules:

1. Module IFBSRO00O,
cleus, and

resident in the nu-

2. Module IFBSROxx (where xx is the mcdel
number: 40, 50, 65, or 75), 1located
on the 1link library. This module is
rodel dependent. The required modules
are selected during system generation.

A CPU Malfunction

A Channel Malfuncticn

causes a causes an

Machine-Check Input/Output

Interruption Interruption
))

(
Y

(
v

r 1 r |
Load		Load	
Machine-Check	p———————4	Input/Output	
New PSW			New PSW
L J l L J			
r 1 T T			
.			[
Wait State	1.		;
			r 1
L 4			I/0 FLIH
	L T .		
r 1			
,	il		
SERO Routine	2. r 1	r + 1	
		System	
L 1	Generation		
Option			S 1
r 1 L .			SER
	e {Interfacej		
SER1 Routine	3.	e 4	
L 1 L 3
Figure 24. System Environment Recording
Resident Module -- IFBSR000 PSW. If the error is a channel error,

Module IFBSRO00 is non-reusable and does
not require operating system facilities.
It halts all I/0 activity and then reads
the first text record of module IFBSROxx
into main storage (beginning 32 bytes past
the end of the nucleus).

Module IFBSR000 saves information (in a
22 byte field in lower storage) to be used
later by IFBSROxx. After it has halted I/C
activity on all devices, IFBSR000 attempts
to read the first 1024 bytes of module
IFBSROxx into main storage. If after ten
retries, these 1024 bytes have not been
read into main storage, IFBSR000 builds IOS
wait state code 000F0A, and then branches
to the Bell Ring/Wait State module which
sounds the console alarm and places the
computer in a wait state. Wait state code
000F0A 1is displayed in the instruction
counter.

Link Library Module -- IFBSROxx

Like IFBSR000, module IFBSROxx does not
require operating system facilities.
IFBSROxx first 1loads. the remainder of
itself into main storage. It then checks
location 50 to determine which type of
malfunction has occurred, a machine-check
error or a channel error. Location 50 is
preassembled to X'FF'. If the error is a
machine-check error, location 50 will have
been overlayed by the machine-check ol1d

location 50 remains unchanged.

If the error is a machine-check
IFBSROxx builds a machine-check record
entry in which to place information akout
the error. If the error is a channel
error, 1IFBSROxx builds a channel error
record entry. The formats of these reccrds
is shown in Appendix G.

error,

then enakles machine-
check interruptions. General registers are
checked for valid parity on all models
except Model 40. Parity indicatcrs are
available for all registers except 13, 14,
and 15 on Models 50 and 75. Floating point
registers are also checked for valid parity
if the wmodel is equipped with floating
point.

Module IFBSROxx

Module IFBSROxx checks the "busy kit" in
each unit control block (UCB) to deterrine

which I/O units were busy when the errcr
occurred. The addresses of as many as ten
busy I/0 devices are collected. IFBSROxxX

then builds a record containing the rrcgram

identification, jobname, stepname, day, and
time. After examining the seek address
cbtained from the header record of the

SYS1.LOGREC data set, IFBSROxx writes (on
that data set) the record it has just
created and an end-of-file record.

Module IFBSROxx then prints the follow-
ing message to the orerator:

Chapter 8: System Environment Recording 53

IFBFO5W MACHINE ERROR. RELOAD 0S/360
This message indicates that a complete
error record has been written on SYS1.
LOGREC. If a message cannot be printed,
IFBSROxx builds IOS display code 000F05 and
branches to the Bell Ring/Wait State
module.

If another machine-check interruption
occurs while IFBSKOxx is collecting data
for an exror record, IFBSROxx stops
collecting data and attempts to write a
partial error record on SYS1.LOGREC con-
taining the data it has already collected.
If it 1is able to do this, it prints the
following message:

IFBFO6W MACHINE FRROR. RELOAD 0S/360
If a message cannot be printed, IFBSROxx
builds I0S display code 000F06 and branches
to the Bell Ring/Wait State module.

If another machine-check interruption
occurs while IFBSRO0xx 1is attempting to
write a partial error record, IFBSROxx

cannot continue processing.
following message:

It prints the

IFBF07S MACHINE ERROR. EXECUTE SEREP

nmachine-check
IFBSROxx from

Other errors besides a
interruption may prevent
writing an error record on SYS1.LOGREC.
These errors (with the messages IFBSROxx
prints to the operator) are as follows:

1. An 1I/0 error,
IFBF08S MACHINE ERROR. EXECUTE SEREP

2. SYS1.1LOGREC data set is full,
IFBF09S MACHINE ERROR. EXECUTE SEREP

3. Module IFBSROxx could not be loaded
into main storage,

IFBFOAS MACHINE ERROR. EXECUTE SEREP

SER1

Like SERO, SER1 collects, formats, and
writes error information after a machine-
check or a channel errcr has occurred. See
Charts 15 and 16. SER1, unlike SERO, is a

single, serially reusable module that
resides in the nucleus.
In addition to writing error records,

SER1 attempts to associate the error with
the task which was executing. If it can do
this, and if the control program is not
damaged by the error, SER1 abnormally ter-
minates the task. The system continues to
operate.

54

If SER1 cannot write a complete erxrror
record or cannot associate the error with
the task, or if the error damages the
contrcl program, the computer is placed in
a wait state. The system must then be
reloaded.

SER1 checks 1location 50 to determwine
which typre of malfunction has occurred, a
machine-check error or a channel error.
Location 50 is preassembled to X'FF'. If
the error is a machine-check error, loca-
tion 50 will have Leen overlayed Lty the
machine-check old PSW. If the error is a
channel error, location 50 remains
unchanged.

SER1 gathers error data into either a
machine-check record entry or a channel
error record entry and writes the record on
SYS1.LOGREC. SER1 uses I/O routines pro-
vided by the operating system (it uses the
EXCP macro instruction to communicate with
the SYS1.LOGREC data set) unless the con-
trol program was damaged by the error. If
the control program was damaged, SER1 uses
its own I/0 routines. The DEB and DCB
required when EXCP is used reside in the
nucleus and are orened by the nucleus
initialization program (NIP).

If SER1 can associate the error with the
task and if the control program is not
damaged, SER1 terminates the task by
kranching to the ABTERM routine. When SER1
regains control from ABTERM, it re-
initializes itself and branches to the
dispatcher so that the system can continue
to operate.

In order for the
operating:

system to continue

1. 2Another error cannot occur while SER1l
is collecting data for a previous
error. If one does, SER1 stops
collecting data and attempts to write
a partial record of the original error
on SYS1.LOGREC. The partial record
contains the data collected before the
second error occurred.

2. SER1 must be able to associate the
error with the task which was
executing.

3. The contrcl program cannot ke
by the error.

damaged

If the system cannot continue operating,
SER1 prints a message on the primary output
device instructing the operator to reload
the operating system. SER1 then places the
systemr in a wait state.

ENVIRONMENT RECORDING AREA

SYS1.LOGREC is a data set on the system
residence device used exclusively by SERO,

SER1, and all preservation recording sys-
tens. It is formatted during systen
generation by utility program IFCDIPOO.
The data placed in SYS1.LOGREC is edited

and printed by utility program IFCEREPO

(EREP). These programs are described in
IBM System/360 Operating System: Utili-
ties, Program Logic Manual, Form Y28-6614.
SYS1.LOGREC contains three types of
records:
1. Header Record - This 1is the first
record in the data set. It defines

the extent of the data set, and
addresses the last record written. It
also contains a safety byte used to
detect overrun. The record is 38
bytes in length.

2. Statistical Data Record Area - This
area contains a record for each unit
control blcck (UCB) in the systerm.

3. Record Entry Area - This area begins
on the track following the area occu-
pied by statistical data records.
SERO and SER1 write machine-check rec-
ords and channel error records in this
area. The format of these records is
described in Appendix G.

Chapter 8: System Environment Recording 55

CHAPTER 9: CHECKPOINT/RESTART

The CHECKPOINT and RESTART service rou-
tines minimize the amount of time wasted
when a program abnormally terminates.
CHKPT macro instructions are used to divide
the program into sections. When the pro-
gram aknormally terminates, it <can be
restarted immediately (this is called Auto-
matic_Restart) or it can be restarted later
by the programmer (this is called Deferred
Restart).

If abnormal termination occurs in the
first section of a program, restart begins

at the beginning of the step. This is
called Step Restart. If abnormal termina-
tion occurs in any other section, restart

may begin at the beginning of that section.
This is called Checkpoint Restart. Check-
point restart eliminates the need to rerun
sections of a program which have already
run successfully.

If a program is coded using three CHKPT
macro instructions, it is divided into four
sections (see Figure 25). If aknormal
termination occurs in section 3, an auto-
matic checkpcint restart begins at CHKPT B
(if the programmer has requested automatic
restarts).

Problem Program

r 1
T |
1] |
| I I
* | |
—X— | CHKPT A |
| |
| | |
2| I
I | |
| | RESTART
——*—— | CHKPT B |€——BEGINS ————- 1
| | HERE |
I | | |
3 | | IF ABNORMAL |
| | —»TERMINATICN-4
| | OCCURS HERE
-3 | CHKPT C |
| I
| | |
& I
{ | |
L J
Figure 25. Proklem Program Checkpoints

The CHECKPOINT routine is called direct-
ly when a procblem program issues a CHKPT
macro instruction. The RESTART routine is
called by a job management program when a

56

restart is scheduled. Charts 17 and 18
show the logic flow of these routines.

Appendix H contains the format of rec-
ords used by CHECKPOINT/RESTART as well as
a list of CHECKPOINT/RESTART SVC MNodules
and Register Usage Takle.

CHECKPOINT (SVC 63)

The CHECKPOINT service routine:
1. Suspends user I/0 requests,

2. Builds a CHECKPOINT entry and writes
it in the CHECKPOINT data set,

3. Restores the user I/0 requests,
4. Returns to the caller.

If the caller has sugppressed checkpoints,
through use of the RD parameter in job
control statements, nc CHECKPOINT entry is
written.

The routine consists of 10 load mcdules
which are executed in the S8VC transient
area after an SVC 63 instruction (CHKPT
racro instruction) is issued. When the SVC
63 instruction is executed, an SVC inter-
ruption occurs and control passes to the
SVC FLIH, the SVC SLIH, and to the first
load module of the CHECKPOINT service rou-
tine (see Figure 26). The remaining 1load
modules receive control via XCTL macro
instructions.

A description of the 10 CHECKPOINT load
modules follows. When reading this
description, refer to Chart 17.

INITIALIZATION MODULES (IGC0006C, IGC0106C,
IGC0206C)

The first 1load wmwodule
(IGC0006C) determines 1if checkpoints have
keen suppressed. If they have, an SVC 3
instruction is issued to pass control to
the SVC EXIT routine and return to the
caller. If they have not, module IGC0006C
determines if the CANCEL operand was speci-
fied in the CHKPT macrc instruction being
serviced. If CANCEL was specified, rro-
cessing continues as described in CANCEL
Processing. If CANCEL was not specified,
module IGC0006C issues an OPEN macro
instruction for the CHECKPOINT data set (if
the caller has not already opened the data
set) and then issues a GETMAIN macro

of CHECKPOINT

instruction for a work area in the dynamic
area of main storage. The second 1load
module (IGC0106C) tests the validity of the
request. If an error is detected, control
passes to checkpoint exit module IGC0QO6C.
If no errors are found, the third load
module (IGC0206C) reads the Job Control
Table (JCT) into the work area, builds the
CHECKPOINT Header Recorder (CHR) (see Ap-
pendix H), and passes control to the Check
I/0 Module.

CHKPT Macro Instruction

SVC 63 I?terruption

= -
0
<
Q
]
[
=
]

e e ol

~—-
9]
<
0

CHECKPOINT
SERVICE
ROUTINES

CHART 17
SHOWS
CHECKPOINT
ROUTINE
LOGIC

[e e e o o S e G —)
s e o o e o —— — s onee. 2]

Figure 26. CHECKPOINT Routine Control Flow

CANCEL PROCESSING

The CANCEL operand of the CHKPT macro
instruction indicates that the caller does
not want to create a new CHECKPOINT entry,
but wants to suppress automatic restarts
from any previously created checkpoints.
When CANCEL is specified, module IGC0006C
issues a GETMAIN macro instruction to
obtain a small work area and then passes
control to module IGC0206C. Module
IGC0206C reads the Job Control Table (JCT)
into the work area and passes control to
exit module IGCOCO06C.

Module IGCO0Q06C sets a CHECKPOINT indi-
cator to show that nc CHECKPOINT entry has

been written, and alters the Job Control
Table (JCT) so it doesn't show the previous
CHECKPOINT entries which have been written.
Module IGC0QO06C then returns the Jok Con-
trol Table to the input queue and returns
control to the caller via an SVC 3 instruc-
tion. (No messages are written to the
operator.)

If an abnormal termination occurs after
CHKPT CANCEL processing has been completed,
no automatic checkpoint restart is ger-
formed. However, the CHECKPOINT entries
which have been written are retained, and
the rprograrmer can restart the step from
one of these entries at a 1later tire (by
submitting the proger restart Job Control
Language).

CHECK I/O MODULE (IGC0506C)

The Check I/0 Module (IGC0506C) issues
the PURGE macrc instruction specifying the
QUIESCE option for each Data Extent Block
(DEB) associated with the caller's Task
Control Block. This causes all of the
caller's pending I/0 requests to be removed
from the Logical Channel Queues, or if
already started, to ke completed. If a
permanent error occurs in a completing QSAM
or QISAM I/0 request, an error code is
returned to the caller, and no checkgcint
is written (unless the QSAM ACC option was
specified for the data set). When all of
the caller's I/0 activity has comgleted,
control passes to the next module
(IGCOA06C) .

PRESERVE MODULES (IGCOA06C, IGCODO6C)

The Preserve Mcdules (IGCOAO6C and
IGCOD06C) write the CHECKPOINT Header Reco-
rd (CHR) created by the third module, then
build and write a Data Set Descriptor
Record (DSDR) for each Job File Control
Block, Job File CcControl Block Extension,
and Generation Data Group Bias Count Takle.
(Formats of these records are shown in
Appendix H.) If end-of-volume occurs for
the CHECKPOINT data set on tape, IGC0206C
is called to attempt to rewrite with a new
tape. If end-of-vclume occurs for the
second time on tape or the CHECKPOINT data
set 1is on a direct access device and
end-of-volume is detected or an I/0 error
occurs in either module, contrcl is trans-
ferred via XCTL to the Resume I/0 Module.
If none of the above errors occur control
then passes to the Checkmain Module.

CHECKMAIN MODULE (IGCOFO06C)
The Checkmain Module (IGCOF06C) writes

the contents of proklem program main
storage onto Core Image Records (CIRs).

Chapter 9: CHECKPOINT/RESTART 57

Then a Supervisor Record (SUR) is con-
structed with task control information and
written as the last record in the CHECK-

POINT entry. (Formats of these records are
shown in Appendix H.) Control then passes
to the Kesume I/O Module via an XCTL. If
an I/0 erxrcr occurs or end-of-voclume is
detected on either tape for the seccnd time
or on a direct access device, control
passes to the Resume I/0 Module with an
error code. If end-of-volume occurs for
the first +time on tape, control is passed
to IG0206C to reprocess the tape.

RESUME I/0 MCDULE (IGCONO6C)

The Resume I/0 Module (IGCONO6C) issues
the RESTORE macro instruction for each Data
Extent Block (DEB) associated with a pre-
viously suspended I/0 request. The
requests are restored to the logical chan-
nel gueues, and if possible, started. Con-
trol then passes to exit module IGCOCO06C.

EXIT MODULE (IGC0QO06C)

For a normal exit, module IGCO0QO06C
issues a STOW macro instruction if the
CAECKPOINT data set has partitioned organi-
zation. It then issues a CLOSE macrc
instruction for the CHECKPOINT data set
(unless the caller issued the OPEN) ,
updates the CHECKPOINT flags and count
fields in the Job Control Takle (JCT),
restores the JCT to the job queue, and
frees the work area. For an exit after an
error has occurred, the preceding functions
are performed if necessary. Control then
passes to the Message Module.

MESSAGE MODULE (IGC0S06C)

The Message Module (IGC0506C) writes a
message indicating successful or unsuccess-

ful cormpletion. One of the following
return codes is placed in Register 15
before control is returned to the caller

via an SVC 3 instruction:

X'00* Valid CHECKPOINT entry written.

X*08" No CHECKPOINT written; calling
error.

X'0C' Permanent I/0 error.

X'10' A valid CHECKPOINT entry was

written, but there were outstand-
ing ENgs. It is the responsibi-
lity of the user to restore these
ENCs during RESTART.

58

RESTART (SVC 52)

The RESTART service routine uses infor-
mation in a CHECKPOINT entry to recreate
the conditions that existed when the CHECK-
POINT entry was written.

The RESTART routine:

1. Restores the proklem program to its
criginal location in main storage,

2. Opens and positions any problemr gro-
gram data sets which were open when
the CHECKPOINT entry was written,

3. Restores task ccntrol information,

4. Passes control to the proklem program
instruction imrmediately following the
CHKPT macro instruction from which
RESTART is occurring.

The routine consists of 14 load modules
which are executed in the SVC tramnsient
area after an SVC 52 instruction is issued.
Before the SVC 52 instruction is issued, a
job management routine (IEFDSDRP) adjusts
the Jjob queue, and assures that device
allocations are compatikle with those which
were in effect when the CHKPT racro
instruction was issued. Just before exit-
ing, IEFDSDRP changes the name cf the
restarting step to IEFRSTRT. This program
consists of only an SVC 52 instructicn.

When the SVC 52 instruction is executed,
an SVC interruption occurs and control
passes to the SVC FLIH, the SVC SLIH, and
to the first load module of the RESTART
service routine (see Figure 27).

A description of the 14 RESTART load
modules follows. When reading this
descripticn, refer to Chart 18.

INITIALIZATION MODULES (IGC0005B, IGCO0105B)

The first load module of RESTART
(IGC0005B) receives the address of a rara-
meter list built by job management routines
from information in the CHECKPOINT Header
Record (CHR). From this parameter 1list,
RESTART determines what the problem prcgram
(dynaric) area boundaries were when the
CHECKPOINT entry was written. It then
issues a GETMAIN fcr the same area (this
includes a RESTART wcrk area). A TCata
Control Block (DCB) fcr the CHECKPOINT data
set is contructed in the work area, and the
RESTART SVRB and the current Task Input/
OCutput Table (TIOT) are moved into the
area. An OPEN macro instruction is issued
for the CHECKPOINT data set, and the next
rnodule is called.

The second load module (IGC0105B) moves
additional CHECKPOINT data set control
blocks into the work area. It positions
the CHECKPOINT data set at the first Core
Image Record (CIR) and calls the Repmain
Module.

REPMAIN MODULE (IGCO0505B)

The Repmain Module (IGC0505B) reads the
Core Image Records (CIRs) into probler
program storage, and reads the Supervisor
Record (SUR) into the work area. (Formats
of these reccrds are shown in Appendix H.)
The address of the "o0ld" Free Area Queue
Element (FQE) is moved to the Boundary Box,
and the TCB fields saved by the CHECKPOINT
routine are moved into the current TCB.
The Repmain Module restores the floating-
point registers, if any, and places the
current protection key in all Program Requ-
est Blocks (PRBs). Control then passes to
the first Job File Control Block (JFCB)
processing module.

SVC 52 Interruption

|~

h)
svc FLIH |

o e oy

——

r 1

| svc SLIE |

L T J

|

— .

| |

| RESTART |

| SERVICE |

| ROUTINES |

| |

| CHART 18 |

| SHOWS |

| RESTART [

I ROUTINE]

| LOGIC |

| |

| No YES |

| =<ERRORS—— |

[[

I I

L 1L, % J

b4

EXIT		ABEND
ROUTINE		ROUTINE
(svc 3)		(svc 13)
L J L i]

Figure 27. RESTART Routine Control Flow

JOB FILE CONTROL BLOCK PROCESSING MODULES
(IGC0G05B, IGCOIOSB)

The first Job File Control Block (JFCB)
Frocessing module (IGCOGO5B) creates a
table in the work area for each JFCB

associated with a data set that was OPEN
when the CHKPT macro instruction was
issued. A DEB, DCB, IOB, and ECB are
constructed within the table for 1later
repositioning I/0 operations. Control then
passes to the second JFCB processing
rwodule.

The second Job File Control Block (JFCB)
processing module (IGCOIO5B) reads in a
JFCB Extension for Sequential Access Method
(saM) data sets which reside on more than
five volumes. Several extensions way be
read until the one containing the volume
serial number which was in use when the

CHKPT macro instruction was issued is
found. Unless all rroblem rrograr data
sets reside on direct access storage

devices, control passes to the first Mcunt/
Verify module. If all data sets are on
direct access storage, control passes to
the Direct Access Mount/Verify Module.

MOUNT/VERIFY MODULES (IGCOKO5B, IGCOMOS5B)

The first Mount/Verify module (IGCOKO5B)
processes all data sets except those resid-
ing on direct access devices. For SYSIN,
SYSOUT, unit record, and graphics data
sets, processing consists only of adjusting
the Data Extent Block (DEB).

For magnetic tape data sets, the vclume
serial number in the primary Unit Control
Block (UCB) in the data set's Task Input/
Output Table (TIOT) entry is compared to
the volume serial number in the work area
table entry built from the Data Set De-
scriptor Record (DSDR). If they are the
same, the necessary adjustments are rade to
the UCB and the DEB. If the volume serial
nunbers do not match, the secondary UCBs
(if any) are searched. If the correct
volume is specified in one of them, it
btecomes the primary UCB. If the volume is
not mounted, a suitable UCB is selected
from the TIOT entry, and a MOUNT message is
written to the operator. For any tares
with nonstandard 1labels, a user-suprlied
verification subroutine is called. After
all tape data sets are processed, control
passes to the Direct Access Mount/Verify
Module or to the Non-Direct Access Proces-
sor Module. ‘

The Direct Access Mount/Verify Module
(IGCOMOSB) performs exactly the same func-
tions as the first Mount/Verify module,
except that no label checking is done, and
all volumes of a concatenated data set with
partitioned or direct access organization

Chapter 9: CHECKPOINT/RESTART 59

are mounted. An error, such as no suitable
UCB for a volume, causes RESTART to termi-
nate with an error message. If no error
occurs, control passes to the first direct
access Position I/0 module (IGCONOSB) or to

the Non-Direct Access Processor Module.

NON-DIRECT ACCESS PROCESSOR MODULE
(IGCOLOS5B)

This module is
Non-Direct Access
(IGCOLO5B) :

used only in PCP. The
Processor Module

1. Writes SYSOUT tape header labels for
deferred restarts,

2. Primes buffers for the card reader.

To write header 1labels, a tape must
already be mounted and must have been
positioned (Ly the scheduler) beyond the

tape mark which closes the previous file.
The JFCB associated with the data set is
read into main storage. Information fror
this JFCB is used to write the header
labels. All lakel fields are in EBCDIC and
the labels are followed by a tape mark.

To prime buffers, the user must keep a
count of the number of GETs the problenr
program issued before the CHKPT macro
instruction was issued. If the access
method 1is in move mode, all buffers are
primed. If it is in locate mode, all but
one buffer is primed.

If an I/0 exrror occurred, control passes
to the RESTART Exit Module. If not, con-
trol passes to module IGCONO5B to rosition
direct access data sets, or to module
IGCOPO5SB if there are no direct access data
sets.

POSITION I/O MODULES (IGCONO5B, IGCOQOS5B,
IGCOPO5B, IGCORO5B)

The first direct access Position 1I/0
module (IGCONOSB) determines if any direct
access data sets have been deleted. When
processing 1is completed, control passes to
the seccnd direct access Position I/¢C
module (IGCO0QO5B). This module performs no
function in PCP. It passes control to
non-direct access Position I1/0 module
IGCOPOSE or to direct access Position I/C
module IGCOROS5SRB.

Position I/0

The non-direct access

module (IGCOPO05B) moves magnetic tape data
sets to where they were 1located when the
CHKPT macrc instruction was issued.

IGCOPO5B assumes the following:

60

e System input data sets have been posi-
tioned by the scheduler to the first
data record of the user's input stream.

e Ncn-standard label data sets have been
positioned by the user lakel routine to
the first data record on the current
volume.

e If this is a deferred restart, system
output data sets have been positioned
by module IGCOLOSB. (If this is an
automatic restart, system output data
sets will be rewound and positioned
now.)

e All other tape data sets are positicned
at load point.

IGCOPO5B positions tapes with standard
labels or no 1labels to the first data
record. Then, using the BLKCT field of the
DCB, IGCOP05B advances each tape data set
to where it was 1located when the CHKPT
macro instruction was issued. If the BLKCT
field is negative or zero, the data set is
positioned to the beginning or end, depend-
ing on whether forward or backward proces-
sing was in progress when the CHKPT macro
instruction was issued. control then
passes to the Final Processing Module or to
direct access Position I/0 module IGCOROS5B.

Direct access Position I/0 module
IGCOR05B checks each data set residing cn a
direct access storage device to determine
if the space allocation limits of the data
set (described in the Data Set Control
Block (DSCB) on the volume) have changed
since the CHKPT macro instruction was
issued. The 1limits which existed at that
time are described in the Data Extent Block
(DEB) saved by the CHECKPOINT routine. If
the space allocation 1limits of an input
data_set have changed (indicating that the

data set has been modified), RESTART is
terminated.
If the space allocation 1limits of an

output data set have changed, the smaller

of the two space allocations is placed in
both the DSCB and the DEB. If the DSCB
allocation is reduced, the Partial Release
module of the CLOSE routine is called to
return the released srace to the free area.
When all direct access data sets have Leen
checked, control passes to the Final Pro-
cessing Module.

FINAL PROCESSING MODULE (IGCOTOS5B)

The Final Processing Module (IGCOTO05B)
reads the directories of any user output
data sets with partitioned organization to
detect members added after the CHKPT macro
instruction was issued. If any are found,

they are deleted with the

instruction.

STOW macro

Finally, the RESTORE macro instruction
is used to reschedule any user 1I/0 requests
suspended by PURGE during CHECKPOINT pro-
cessing. Ccntrol then passes to the
RESTART Exit Module.

EXIT MODULE (IGCOVO05B)

The RESTART Exit Module (IGCOVO05B) first

tests an error code field in the work area
to determine if entry is for an error
termination. If an error code is found,

message IHJ007I is issued. The exit module
then issues an ABEND macro instruction toc
abnormally terminate the task.

If no error has occurred, the exit
nmodule compares the sizes of the o0ld Task
Input/Output Table (TIOT) and current TIOT
(which was saved in the RESTART work area).
If the current TIOT is smaller or equal to
the old TIOT, it overlays the old TIOT, and
the RESTART work area is freed. 1If the
current TIOT is larger, it is moved to the
end of the work area, and both the remain-
der of the work area and the old TIOT are
freed. The exit module writes message
IHJ008I to inform the operator that the jcb
is being restarted. It then loads a com-
pletion code of X'04' into Register 15 to
inform the proklem program that it is keing
restarted, and issues an SVC 3 instruction
to pass control to the proklem program.

If the program again abnormally ter-
minates (and RESTART has not Leen
deferred), RESTART will again ke attempted.

Chapter 9: CHECKPOINT/RESTART 61

CHARTS

e Chart 0i. Fixed-Task Supervisor Control Flow
(Described in the introduction to this manual)

HREKA2RK R Rk RRk

* INTERRUPTION *
*

SYSTEM ENVIRONMENT RECORDING

[A}
therrd

s
-
-
-
-
-
INTERRUPTION o«
SUPERVISION CHART 02
.
.
- - -
- . -
- . -
- - -
- - -
- . - - -
- - - - FIXED-TASK SUPERVISOR COMPONENTS -
- X -
- HERERC2RE TR KK KKK -
- * * - - -
- * ENTRY * - -~ TASK SUPERVIS ION CHARTS 03-06 -
- * PROCEDURES * - - -
- * * - - ABEND EXTRACT SPIE -
- * * - - -
- Aok ok ROk Rk kK ok kKK - - ATTACH POST WAIT -
- - - - -
- - - - ENQ DEQ -
- . - - -
- . - - -
- - - — MAIN STORAGE SUPERVISION CHART 07 -
- . - - -
- - - - FREEMAIN GETMAIN -
- . - - -
- - - — CONTENTS SUPERVISION CHART 08 -
- . - - -
- - - - DELETE LINK SYNCH -
- . - - -
- - - - IDENT IFY LOAD XCTL -
- . - - -
- - -
- ;(- — PROGRAM FETCH CHARTS 09-10 -
- * - - -
- E2" % -
- ok *o - - -
- % EXECUTE %o - -~ OVERLAY SUPERVISION CHART 11 -
- *e SERVICE e*¥XeesooeeX= -
- *e ROUTINE o* -
- * - -
- .*o .*. — TIME SUPERVISION CHART 12 -
- - TIME TIMER SLIH -
- - STIMER TTIMER -

- SERO CHARTS 13-14

- SER1 CHARTS 15-16

- — CHECKPOINT/RESTART CHARTS 17-18 -

Xeoes s esen s e et b ¥

OTHER CONTROL PROGRAM COMPONENTS

L T T T T T T T T T T T T O T O B R

- FARRAG2 KA RRERKRRR - z
- * * . DATA MANAGEMENT ROUTINES -
- * EXITING M - -
- * PROCEDURES % - JOB MANAGEMENT ROUT INES -
- * * - -
- * * - 1/0 SUPERVISOR ROUTINES -
z PO - -
- .
- .
z : z z
z : - 1/0 SUPERVISOR PLM Y28-6616 -
- : — TESTRAN PLM Y28-6611 -
- : z z
- :
- .
- .
.
.
.
.
.
:
N
.
.
X
KA DR SRk
% PROCESSING *
* PROGRAM %
* *
[PR—
INITIAL PROGRAM LOADER———————m=m CHART 19

NUCLEUS INITIALIZATION PROGRAM—-CHART 20

62

Chart 02.
(Descriked in Charpter 1)

Interruption Supervision Control Flow

TIEAATH AATH
Hok kR A2 KRR ARk HAk AR AT R KRR AR KK FEEXEASEEEE KRR RAS
ARHKA DRR KRRk * SVC FLIH * * *TYPE 1 EXIT
v kR KAk KKk TYPE 1 k- k—k—k— k% A S ek
* INTERRUPTION *cceeeeseXkSORTS OUT TYPEl*as «X#* APPROPRIATE *ao cecacs eeee Xk FINDS OUT IF .
* *SVCSe SETS TYPE* * TYPE 1 SVC % *TYPE 1 SW CALLR* .
FRAKIK KK ERREE * 1 SWITCH * * ROUT INE * *SET OR DISABLED* .
AR KRR KKK P T TR PP B
. - .
. . .
- . .
- . -
. . F .
o - 0
IEAATA X . R o
A b i Aok Rk B3 Rk K kKRR KK . .
* SVC SLIH * . T .
Hm K K s—# TYPE 2 %—k—k—d—km ke h—k— . Y .
% SETS UP AND *eeceeeseeX* APPROPRIATE *ececcee . P .
*QUEUES SVRB ON ¥ SVC * TYPE 2 SVC . - E .
ACTIVE LIST * ROUT INE * . . .
#t#**t**t****ttt# AR AR KRR AR KKK . - 1 .
- .
. s
. . . v .
. . - I .
. . - T .
. . . C .
. - - H
. *tt**CS**t**t#*t* . . .
. . . S .
« RESIDENT TYPE 3 *—*-*-x—* PRI, . . E .
.o eX* APPROPRIATE *eeeeX T .
- * TYPE 3 OR 4 % .
. * SVC ROUTINE % . . A .
. Hkk KA AR AR AR - . N
. . - D .
.
. - . o .
. . . 1 .
. . . S .
. . A .
. AATA . B
. USES FINCH *%kk#D3 %Ak kkkikkdk o RRERKDAKKAKKKAKKK . L .
- T0 GET * * « KEXIT SvC 3% . E .
. TYPES 3,8 *—k—k—k—k—k—k—k—k X KKk KK e K e K . M.
ceececsssseazerac Xk APPROPRIATE = *oooceee X¥DEQUEUES THE RBEeceecccaccccancaXs E .
s TYPE 3 OR 4 SVC* * FROM THE * - N o
UT IN * * ACTIVE RBQ * . T .
:*:********** R AR AR KRR A . .
.
. .
IF CALLER IS PSEUDO DISABLED . .
e . .
. . .
IEAAT - . .
t#***EZ#t*t**ttt* HRE I kKRR KK X . .
HHEKE 1 Rk Ak K * 1/0 FLIH * * HRAKE 4 FA KR KKK . N
* INPUT/OUTPUT * B LS At AL * INPUT/ * % INTERRUPTED * . -
#* INTERRUPTION *aas Xk SAVES AND - *X. Xk OUTPUT * * SERVICE * .
* * RESTORES * SUPERVISOR * * ROUT INE * .
TR KRR AR K *MACHINE STATUS : * * FAAAAAK KRR KKK . .
HREAAAKARK KKK P Y . -
. . -
. . .
. . .
. . .
ecetececcsccscsceccssscscecccacescessecscccctessaseccssnsscsaccsssasscsasccsasXe -
- .
TEAQE X00 . .
*****Fz*t***:**t* *k***F3#*#****t** . .
FkaokF Lk ok ook ok *T/E FLIH *T/E ROUT INE . -
*TIMER/EXTERNAL * AL S AR - .
* INTERRUPTION #eeececeoeX*POST ECBSe SET *XeeseseoeX* APPROPRIATE * . .
* *IRBSe ADJ CLOCK* *TIMER/EXTERNAL * . .
e *+ TIMR REQ QUE * *SERVICE ROUT INE* . -
FA AR KKK R AR P . -
- - .
- .
ecscecscce cessen cccecsccccscas
.
-
.
.
.
. -
. . .
. -
. .
. -
. .
3 .
IEAATH IEAAPLOO IEAAABOO 1EAAPS
Fok K AKH2 Aok KKk KKK EXEARHT kAR **tttHs#****t*t** .
****Hlt*t****t* * FLIH *NO *PROLOG A AAH A A A KKK A * DISPATCHER * o
PR e kmk k= Kk K~ K P E Fm K K K K K K : ko k—k——k—k—k—k o
: lNTERRUPTlON ¥eeeeeeeoXsCHECKS FOR PIE *eoeooeeoXESETS COMPLETION¥eeeoessoxk ABTERM * *DETERM!NES NEXT# .
* SHOWING USER * *CODEs TCB ADDR, * ROUT .
T e * ANTICIPATION * * AND RET. ADDR * P . CONYROL cpu : -
e et L] KA HOR ROk K Hk AR ERRARERRRRRRRE o
«PIE - .
- .

.
eeeeXeXe
-

-
-
.
-
RS NS S L d .
* FROM * .
% ANY SERVICE * -
ROUT INE * .
RSS2 2222 LT 2l d .
X .
- -
. .
. -
- .
- -
- .
IEAATA X o
ok k kK 4%k kR kok Rk kK X
HkkKK 1Rkk Rk kkk*k Aok ERK 3 kR kK *VAL[DITV CHECK * ok okok K S e ok ok ok ke ok
* MACHINE CHECK * MACHINE WAIT * SYSTEM * kR kK k— ke —k— *
* INTERRUPTION *--.-...--...........-.......-.....X* ENV IRONMENT * * ‘I’ TS * * PROCESSING *
* STATE OR * RECORDING * * ADDRESSES * * PROGRAM
tt*t****t** Fdok R kR R kR kR kK * * Fokokok ok kR Kk Rk kokk
kkkkdkkkkkkkkk kR kK

Charts 63

Chart 03.

Task Supervision Control Flow
(Described in Chapter 2)

H Rk AS KRk Rk kKK
FROM *

* %

sv *
* FLIH OR SLIH %
kR kR Rk kokk kKK

- .
. . . . - . .
. . . . - - . .
- - -
. . . . - . . -
. . . . - . . .
- - - .
- - - - - . . .
. - - IEAAADOO . -
. . - - - THROUGH . -
IEAAATO0O X « IEAAXROO X TEAAPT X « IEAAENQO X IEAAADO3 X -
ok kokC 1 dokokdok Kook Kok - ok ok ok C 2 3Kk koK Fokok Rk CI Rk KRk Rk Ak - RERARCARRKRKKRRRE Fodok ok ok C 5 dodokok ok koK koK -
ATTAC * . * EXTRACT * * POST * . El * * ABDUMP * .
e S K K - *m ke ke Km k—k— kmk— K o ek e k— - Kk Kk kK K ok ke kK -
*PASSES CONTROL * - * PROVIDES ¥eeeeeXeeoeo* SIGNALS THAT * - * RESERVE A ¥eeeeXeoeokx PREPARES FULL * -
% TO AND FROM % - * INFORMATION % - * AN EVENT HAS * - * DIRECT ACCESS * - * STORAGE DUMP * .
* REQUESTED RTN % - * FROM TCB * - * OCCURRED * - *STORAGE DEVICE * . * FOR ABEND * -
sokdokok kKRR ok kR K . ook Rk Rk Rk Rk kKK Aotk ok ok kool ok dokok Kok Aok kRok kR ko kR oK - Aok kR Rk Rk kK
- . -
- - - . . .
. . - . . .
. - - - . .
- - - - - IEAATMOO -
- - - - - THROUGH -
. «IEAAPX00 e TEAAWT . IEAADEQO - IEAATMOS -
. . Aok kD2 Aok Kk K kKK - dokkkD3 Rk kkdkokk ok kK - Fook Kk D4Rk Rk Kk KAk K - *A KK RDS kKA KRk kK -
- - * SPIE * - * WAIT * - DEQ * . * ABEND * -
. o S A o d e o K K e e — K Ak ke ke
. eee X*¥ESTABLISHES PIEX - * STOPS TASK *X oo . * ENDS TASKe IF *X
- * AND SETS PSW % - * UNTIL EVENT * *ACCESS STORAGE * - * DUMP REQ,USES *
- * PROGRAM MASK % - * IS POSTED * * DEVICE * . *ABDUMP OR GIVES*
- sk Rk Rk Rk kK - *% ok kKK - *INDICAT IVE *DUMP*
- . . . B . Aokok ok koK Rk ook ok ok
. - . . - . .
. - .
- . -
. . . .
. . - . .
- -
- - . - . X
. - - . . ok kRES okk Kk kk Kk
X X X - *JOB MANAGEMENT *
P R R R D R LR R E R TR TRy * GO *
. * MODULE *
. sk ko Rk Rk kK
-
.
oXe
F3 *eo
ok *eo kR RFQRkkkR kK
- * *
*e TYPE 1 SVC EXIT *
*e -
*eo ok ook ok ok ok ok ok ok ok ok
*o *
* YES
.
.
X
FkFKG3 Rk kdokodkokok ok
* *
* TYPE 1 EXIT *
* *
Fokdokk Rk Rk ROk Rk
SVC ENTRY AND EXIT PROCEDURES ARE SHOWN ON CHART 02
IEAAABOO
Fokkkok)3 kR dkok ok ok
Aokkk J2 Rk kkkkkkk * ABTERM * RS SRR KKKk
ROM * ok — k= k= — Kk K * RETURN *
% ANY SERVICE *eeeceooeXX¥ SCHEDULES ¥ooooeeeeX¥ TO *
* ROUTINE * * ABEND * * CALLER *
FxkRokk kR Rk ok Rk * * Fokkkdok Rk kR kR Rk K
sk 3ok ok Rk Rk Kk

64

® Chart 04.

(Described in Chapter 2)

ERREKB L RERREREKEEK
*IEAOVL 00 06%
W e e K K B k— ke
* CHECK INPUT
*PARAMETERS FOR
* VAL IDITY *
EEL 222222 RS 22 2]

*Xe s 00
.

c1 *e
o ¥
* o

*Xeoooee

16C056
HREEAI R KR RR KKKk
* ENG :
‘*‘****‘**#*’***

*o

* *a
ENQ OR *o
RESERVE ok

*o REQUEST %

*o *

-
*e o%
ENQ

-
RESERVE ok

ecsceke

.
.
-
.
-

-
*o .
X

ok

ENQ/RESERVE Service Routine (IEAAENQO)

FROM
svC
SLIH

ENG 1S HANDLED
AS A NOP IN PCP

ok ES ¥ uce « NO
¥« ADDRESSES AREckcoeeeeeeX¥eREPRESENTS A cXeceveccseccsecaccscsccscccacccsccssaccsancsosocccsccsncsccsccccccsccccsenccsacscs

*e VALID o%

DO O R N N A N R I A S AP S A AT S IS ST AN WY

ses s

.
-
-
-
-
-
-

DN

-
o
-
-
-

-
o
.
-
-
-
-
-
X

*kkkJ IRRE Rk kKKK
* T0 *
% ABEND ROUTINE %
* (SvC 13) *

dokk kR Rk kKKK

*e SHARED %

*eDASD %
*e ok
* YES
-
-
FINDMAY o ko
*****DZ#***'**‘** D3 *-
SEAR! *
*MAJOR QCB QUEUE % acB FOR *. NO
*FOR MAJOR NAME *.-...-..X*. MAJOR NAME -
* (QNAME) OF *q ok
* RE SQUI RCE *o .*
'*tt#**#***t***t# *e *
* YES
-
.
-
.
FINDMIN .
t****EZ**#*****‘*
H -
’MINDR GCB QUEUE* B

*FOR MINOR NAME *X-.........-......

XeeesseosoccccceekeUSEs OR HAVE <%

* RESQURCE
Rk k Rk kR kR kkkkk
-
-
X
o ke eke
F2 *o F3 *e
¥ *o ¥ *e
«% QCB FOR *e NO
eo MINOR NAME .t........x. RET = TEST
*e EXISTS % *o ok
*e ok *e ok
*e o¥ *e o¥
* YES * YES
- -
- -
- .
. -
X .
o¥e -
G2 *o
X *eo .
NO «* RET=TEST, *e -
.
- - .
*e -k -
*e o¥ -
* YES .
- B
. .
- -
X
KRR RH2 %k kK Kk kkkk Aok K H3 dodokdkokkkok kok
* * * *

* * * *
*RETURN CODE = 8% *RETURN CODE = 0%
* * * *

* * * *
ok kK Rk ok koo xRk Aok Rk ok kR kkk ok
- .

. .

- -

. X

*e NO
.*........XtBUlLD MINOR QCB*
* *

-

-
-

D4
¥
ok
eeeeXk*e RET
*o
*o

*o ok .
* NO B
. B
- -
. -
- B
. -
CREATE1 X -

kkkkkESRRRKRKKKKKK
* * -
* * -
BUILD MAJOR QCB .
* * -
* * .
ook ok o ok ok ok ok doR Kok .
- -
B -

CREATE2
*****F##**#*i*t**

-
-
-
-
-
-
-

* *
*dkkkdok Rk ok okok ok ko -
- -
- .
- B .
- -
- -
- .
X -
*EEXRGAR KRR kR K hkk -
* * .
* INCREMENT * -
% TCB AND UCB * -
*RESERVE COUNTS * .
* * -
ERE R L ES 2 2 S22 2 -
. .

-
X .

. X
Ha *a Ak RARHS kR Kk Kk Kok
ok *o * *
«* RET=TEST, %s YES

*
*eUSEs OR HAVE e*eeceoee X*RETURN CODE = 0%
* *

- -
*o ok * *
*e oX ok ook ok o ook ok K ok kK ok
* NO .
- -
. -
X

@eececcccccceaccecsccescsccsttsecscsecssesccscecsecsccessaccessescssescsccaccsas Xe

-
-

X
Ak kK JS Fodok ok ok ok
* *
* RETURN *
* *
A e ook ol ok ok ok koK ok

TO REQUESTING
ROUTINE

Charts

65

e Chart 05.

66

DEQ Service Routine (IEAADEQO)
(Cescribed in Chapter 2)

1GCo48
Fkkk AT Kok dkokkokkok
* FROM
* DEQ * SvcC
* * SLIH
e e e ook ok ok ok eokok ok
-
-
-
X
o¥o * DETERMINED FROM
REREEBLERR R kKRR KK 83 *e CODE BITS IN
*IEAOQVL 00 06% -¥ - PARAMETER LISTe.
—‘——t—t—*—*—t—* RELEASE .* DEQ OR *e DEQ DEQ IS HANDLED
CK INPUT ccecse o ke RELEASE e¥eome AS A NOP IN PCPe
*PARAMETERS FOR * *.REQUEST* ok .
* VAL IDIT -
****t****#tt*t#*t *. -* .
. * -
- .
- -
-
- -
X -
oke FINDMAJ e¥e -
c1 *e #*t*tcz******t*#* c3 *o -
.* SEARCH * o % *q .
“xe YES #MAJOR QCB QUEUE* <% QCB FOR %o NO X
aADDRESSES ARE-....--.-X*FDR MAJOR NAME *...--.-.X*- MAJOR NAME e¥eeveseereccssccscsesccsccvsssocsocsanscsscnce
*e VALID % (QNAME) OF * *e EXISTS %
*o ok * RESOURCE *o o %
*e ok Rokkokokkokokdkokkkkkokkk *e ok
* NO * YES
- -
- .
- .
. eecsccccccssccsccccccssacan
- FINDMIN
X t****DZ***#****** *****DB********** **04*******
*kKRD] Hkkkkkkkk
* #MINDR QCB QUEUE* *!NlTlALIZr IDB.*

* ABEND ROUTINE * *FOR MINOR NAME *

* (svC 13) * * (RNAME) OF *
Ao ok ok ok ok ok o ok Kok * RES RCE
#*#****8***‘*****
.
-
X
o ¥
E2 *a

ok *e
NO % QCB FOR *e
eeee*s MINOR NAME %

- *e EXISTS ok *CCW, AND AVT *
- *e % * *
- e ok Ak K ok kK Skt Rk kR Kk
. * YES X -
. . . -
- . . .
. . . -
- - . .
- . « YES .
- X ke X
- FERKKF 2Rk ARk KK F3 *e HRF 4ok kkokk ok
* * ok *o * *
* DECREMENT * o X ucs *e *FREEMAIN 10B,%
- * UCB RESERVE *ee e e X¥e RESERVE COUNT o % *DCBs ECB,s DEB»
- * COUNT * *e =0 ok *CCW, AND AVT ¥
- * * *e ok * *
. B R T Y *o o% Fodk ok ROk KK
- * NO -
- . .
- - -
. . .
. .
- . .
- X .
- RRARRG2 kR kKK ARERKGS kR KAk KA KK .
- * DEQUEUE MINOR * * * .
- * QCB AND * * DECREMENT * B -
- *FREEMAIN SPACE *Xeeseseoe® TCB RESERVE *Xeeseecscccccccces
- * IT OCCUPIED * * UNT *
. * * * *
ER RIS EL RSS2 S22 2] xRk ROk ok Rk ko
. -
- -
. .
. .
- .
- X
- ke
- H2 *. Rk KkH3 kR dokk Rk Kk
* DEOUEUE MAJDR *
- o*LAST MINOR *e YES
- *eQCB ON MINOR .t.o~.---.X*FREEMAlN SPACE *
. *.QCB QUEUE. % # IT OCCUPIED *
- . . * *
. *e o Fok Rk kKRR KKK oK
- * NO .
. . .
. -

*DCBs ECBs DEBR, *.--.....X*EXCP TO RELEASE#
*

* CCws, AND AVT

*
******t*!********
-

see e X
DR

HKES ¥k KKKk
* *

*GETMAIN 108, *
*DCBs ECB, DEB, *

cecee

X
Aok E 430k ek ok ok
* *

* WAIT *
*FOR COMPLETION *
* OF 1/0 *

*

.
.
.

IR R N I I S S S S S R S O R I R R N R N N N I N I SR ST PSP arY

A okk JS kokkok ok kkkk
*
* RETURN *
* *
Ak od e e kok ok ok kok ok ok

TO REQUESTING
ROUTINE

——

e Chart 06.

Validity Check Subroutine (IEAOVLO00)
(Described in Chagter 2)

ok kAL Rk Rk
* VALIDITY *
* CHECK *
* SUBROUTINE *
e e
.
-
.
.
.
.
X
o¥e o¥o o Xo
B1 * o B2 *o B3 *eo Rk KRB Rk KK kkk ok
¥ *o * - *e * * *okkkBS R okok ok koK
e* IS CALLER *a SYSTEM REQUEST ¥ IS *CHANGE REQUEST * * RETURN
SYSTEM OR PROC. eeeX RESERVE eeeeXke DEVICE eeeeX*FROM RESERVE TO¥*eseee X* TO CALLER
*e PROGRAM o% ¥ *eSHARABLE % * ENQ-SYSTEMS % X *
B . ¥ *e - * * . Aok ko Rk Rk Rk
*o oX *e o ¥ *o o X RRRR R AR KRRk .
* PROCe * NO * YES -
« PROGRAM - .
- teccccscecsccseccccccccscecXeseccccacccsacccccccessccccscscscsacccne
-
.
X o¥eo
HRRRRCLRkR KRRk KK c2 *a
*VAL IDITY CHECK X - *e
* BOUNDARIES OF * - NO
* PARAMETER ¥eooeooeoeXke VALID 0¥ 0 00ccccccscsccccncccnccose
* ELEMENT * *e ¥ -
*— — — — RETURN * *e ¥ .
stk dookok ok Kk kAo e o X .
* YES -
- .
. .
. .
. -
. .
X o¥o -
*ERRRD2 kR kKKK KK D3 *e -
*VALIDITY CHECK * ok *o .
* MAJOR NAME * -
* ¥eoaoooeaeXke VALID o Xe
* * *o o ¥ .
- — — — RETURN ¥ *q ¥ .
kkokok ok KoKk ook Kok *e o¥ .
* YES .
- .
. .
.
.
X e¥a .
FokokokE 3 ok dooror ok ok ok ok E4 *o .
*VALIDITY CHECK * ¥ * o .
* MINOR NAME * ¥ *o NO .
* ¥eeoseoseeX¥e VALID e¥eeveeccscccscccceXe
* * . .
*— — — — RETURN * ok -
dok ok ok kKK kR K kK ok .
YES .
.
-
.
. -
Fa *a -
*o .
REQUEST -
- eecccce = RESERVE -
- . - -
- *o ¥ -
. *eo ok -
- * YES -
- . -
- . -
. . -
- X -
- o¥eo -
- kKR RG2 R Rk kK b Rt bbb Ga *o .
- * * *VALIDITY CHECK * ¥ -
- *CHANGE REQUEST * * BOUNDARIES OF * YES % ONLY *eo s] .
eXee*FROM RESERVE TO* * EXTENDED *Xeeeoseoseeke ELEMENT 1IN e¥ceoeeccccccscsccsXe
- * ENQ-SYSTEMS % * ELEMENT * *e LIST ok -
- * * *— — — — RETURN * *e -
- S e L sk ok R R KRk dOR KK -
. X © . -
- - - .
. - . -
- - . .
. . - -
- « NO X -
. ke ke X
. H2 *o H3 *o FERKKHS KoKk kA kKK
- - *ao *
- o«% IS DEVICE *e * SET
- *¥eDIRECT ACCESSe*Xeoee VALID X%* ABEND CODE.,
- AND SHARABLEX* *eo ¥ * INVALID
- - *
. *e FxE kR kkok Aok k
- .
- .
- ccccee eccscce

Hodokok J5 %ok kKRR kK
* RETURN
* TO CALLER
*
Fdokokkkk ok kR kK

*
*

*
*

3* 3 3%

%

*
*

Charts

67

Chart 07.

Main Storage Supervision Control Flow

(Described in Chapter 3)

FOR MODULES IEAAMS00,IEABMSO00+IEACMSO00,IEADMS00

PARAMETER-LIST GETMAIN

X
Rk R KE 1 R kkk K kkkkk
* SETS UP QUEUE *
ELEMENT SHOWING
* USAGE + *
* REMAINING *
* FREE AREA *
s ko ok K ok KOk ok Rk Rk

-

-

.
16C004 e GETMAIN
- . -
- . -
- x -
- *RRKKC L RRERKRKKER —
- * * -
- * ANALYZES * -
- * PARAMETER * -
- * LIST * -
- * * -
- B T
- . -
- . -
- X -
- HRRERDLRRRRRRRKRR —
- * * -
- * FINDS * -
- * SPACE *Xaom
- * * -
- * * -
- B L
- . -
- . -
- . -
- . -

-
-

HHKKAZ kKRR RN
* FROM *
* SVC FLIH *

ook Kook ok kR Rk kR Kk

.
.
.
X
ek

B3 *o

ok
<% REQUEST
TYPE
*eo o¥

REGISTEKR-TYPE
REQUESTS

#Xeoee s s s et os s s e a0

1GCOo10

¥ *e
NO %

YES
FREEMAIN e¥eae

ecscace

.
*e ok
e o¥
*

OPTIONS
le VALIDITY CHECKINGa

2e CODING TO FREE ALL STORAGE
AREAS OCCUPIED BY INACTIVE
ROUTINES IF REQUIRED TO
SATISFY THE REQUEIST e

PARAMETER-LIST FREEMAIN

16C005

REQUESTS

ceee

FREEMAIN

[O A A R O B A B B A A AR B A I |

Xs oo s e

ko C O d Ok ok ok Kk
* *

ANALYZES
PARAMETER
LIST

*HHH
* %%

A %ok ok ok ok ok ok ook ok ok
-

MEEEE

Ak K KD S A ok ok ok ok kK
* *

* MAKES AREA
«X* PART OF FREFE
* AREA

* % % ¥

*
o e e o e ok g ok ok ok kK kK

xe e a0

kKK S Ao ok kKK KK
* *

* COMBINES AREA *
* WITH ADJACENT *
* *

* *
3 o kKK KK K kK K KK
.

0000000000000 0c00000000000eceestetecssosecerncesesesesseretosesssscecssssscsssososcsscscnssncsccsscsccsccnsosssXe

SVC ENTRY AND EXIT PROCEDURES ARE SHOWN ON CHART 02

68

X
Hok kK S dkok ok koK K
* TYPE 1 EXIT *
* *

e e e ook o o o ok ok ok

L T T T T T T T T T T T T T T A O O O B A O |

PN

Chart

IEAADL OO
IEABDLOO

08.

Contents Supervision Control Flow

(Described in Chapter 4)

CELETE

eceee

L T T T T T T T O O O O A |

Xeososss s

AEEEEC I RRK KR KRR KK

REDUCES
USE COUNT

EE X
EX TR

Aok Rk R ROk R Rk

Xe s e e 3

#****El*t*****t**
*FREEMA IN
A o o e e e e *
%* CLEARS RES *
*FROM LOAD LIST *
* AND STORAGE %
e ko ok ok ok g ok ok ko R kK
-
eXe

-

B
-
-
-
-
-
-
-
-

L T T T T T T T L T T T L O B O

IEAAIDOO

.
X
Hokdok F 1k ok koK okok ok ok

* *
* TYPE 1 EXIT %
* *

ke ok ok kR KOk kR R

OPTION

eeccscccceacscscccccaccncccse

IDENTIFY

IEAASYO0O

AR RAT AR RN
* FROM svC *
* FLIH OR *

* SLIH *
LRI S R 2SS LS 2]

eecsccccccscXe

.

.

.

ecscscccsce
-
IEAATC . LOAD

- X -
- o¥e -
- c3 *e -
- -¥ . -
- e*% ROUTINE %o NO -
- *e PREVIOUSLY e¥eo0e -
- *e LOADED % - -
- *eo ok - -
- * YES -
- - .« -
- X .« -
- EEE SRR LSS S 2] . -
- * * .« -
- * INCREASES * - -
~ eseceek USE COUNT * -
- . * P
- - * * . -
- e ok ok dkok ok Rk ok kR ok Rk Kk - -
- « -
- e ececcsccccsces —
I X -
- e *****EB‘*#‘****** -
- *F INCH -
- - A e o e e *—‘—* -
- e * USES FETCH. * -
- e * QUEUES RB * -
- . * ON LOAD LIST * -
- o e e o o e o ok ok Kook R K -

n
=<
z
[a)
I

L T T T T T T O I O A I

Xsess s 00

****#Hltt*t***#**
*GETMAIN

P A ek
* CREATES MINOR *

* LPRBe QUEUES *
* ON LOAD LIST %
o e e ok R Kk ok ok K

.

.

.

X
Aok g 1 dokokkok dok K kok
* *
* QUEUES *
* LPRB.ON *
* MINOR LIST *
* *
e e Ao o oK e kR R Ok K

L2 T T T T I O O O O O

L T T T T T T O I O O

B
-
.
.
.
.
-
-
-
-
-
-
-
.
-
-
.
-
.
.
-
.
-
-

****tHZ********‘*

*GETMAIN

L S B et Bt Sk Tt B t
* OBTAINS

* CE *

* FO PRB *
ek e e ok ot ok ok ok eokokok K

MR

KOk 2 Rk Aok ROk Kk
*

CREATES AND
INITIALIZES
PRE

%% #

*
*
*
*
e e ook ok ok o ok ok ok kR ok

LN L T T T T T I O O A

svC

-
-
eee

X

ENTRY AND EXIT PROCEDURES ARE SHOWN ON CHART 02

R I R R R R R R R T

R

.
-
-

tes s

-
.
-
.
B
-

R

.
.
-
-
-
-
.
-
.
-
.

L T T T T T T T T T T T T T T T T A L O O

.

-

.

-
IEAATC . XCTL

o

o Xe
Ccs *a
. *o
YES % XCTLOR *o

eceoke ON_LOAD ¥
. *e LIST ok
- . X
. *e o ¥
. * NO
- -
- .
- -
. X
- Rk KR DS 4 Ak ok ok Kok kK k
. * *
- * PLACES RB *
. * OF XCTLOR ON %
- * INACTIVE LIST *
- * *
. LR RS LSS R R 23
. -
. -
- csece

-
NOTE THIS TEST IS
PERFORMED ONLY IF
THE RESIDENT TYPE
3 OR 4 SVC ROUTINE
OPTION IS SELECTED

*e RESIDENT o *
*

LN T L T T T T T L I I O O

. .
Ko ¥
* NO
.
.
B
. t*#t#est*t#*ttt*#
- *F INCH
. A
- % USES FETCH *
. * QUEUES RB ON *
. * ACTIVE LIST *
. EET T TR T PR T
.
IEAATC . LINK— .
. .
. .
X .
tHA*tt*t*#*#t .
*FREEMA IN -
ke t—*—*—*—x-*—* .

LT T T T U O A O A

* MAKES SPACE *
* FOR LINKEEe *

* *
e o o e b e e okok ok ok ok ok ok

Xe e s e

***t*JQ*ttt*#*tt*
*FINCH

o A e e N — t
* USES FETCH TO *
* GET LINKEEe ¥

* ES RB. *
Hdok Rk Rk kR R Rk kK
.

L T T T T O T I I A O

X

.
.
.
-
.

R

XS 8088068900000 00 0000008000000ttt BIsILILIOS

.
00000000 000000000 neceenetentetsesrestseeeesstseccetensecsacenseseacecscsnccscscsccscccccscseccccccscsccsccceXe

X
X
Aok ok KS R ko e dokok ok K
#* *
* EXIT *
*
0 e e ok koK ok ok kR ok

Charts

69

® Chart 09. Program Fetch Control Flow
(Described in Chapter 5)

ENTRY IS BY
BRANCH AND LINK (BAL)

MINOO7 o%*.
A3

*e Fdok Rk AG Rk kR K kKR kR AS KK KRk ROk
B Y bt HHEKAKK KRR KKK ok *o * GET_TTR OF *
* ENTRY FROM * * ENTRY FROM * «*IS PROGRAM *. NO *SCAT/TRANS TBL * *EXAMINE LINKAGE*
* OVERLAY * *CONTENTS SUPER—% eeeX*e IN OVERLAY e¥eesesee s X¥FROM PDS DIRCTY*eoooooee XX
* SUPERVISOR * * VISOR (FINCH) * . *eSTRUCTURE o ¥ *AND READ (EXCP)* * HIFRARCHY *
kR bk Rk Sk ok kR Kk . *e o* *SCAT/TRANS TBL * * ATTRIBUTES *
. - - *e o Fdokok kKRR kK Aotk KoKk KK Kk ok Rk
- - . * YES -
. INITIALIZATION - - . .
. ——————————— e - . - .
. - . . .
-
- % - o X
1EWBOSV X IEWMSEP - MINOO9 X - Xe
et Rl PR T D #tt##az#tt*#ttt** - Fok AR B3 Kok ok kKKK KRB QR KRRk KRRk BS *e
* * - * * * * «*1S ONLY*e
* RECEIVE * t RECEIVE # - * UP CHANNEL * *FREE SCAT/TRANS* YES o% NE .
* NOTE LIST * * DCB» BLD * - * PROGRAM AND * % AND CALCULATE *Xeoeoeeooeoke HIERARCHY <%
* ADDRESS * * PARAMETERS * - *READ NOTE LIST * *STORAGE NEEDED * *e SPECIFIEDe %
* * * * . * * * * *o -
ARk ROk kR kK ROk R R R kKK . Aok ook kR Ok KRR K ook kR ROk Kok ok *e ok
. . . . - * NO
- - . . - .
. -
-
eXeoseesccsccccsncsscscacanae - . - -
. . - . .
MINOOS X oke - X X X
tt#ttClittltt#lit c2 *e - lt#*tCB*ttl*t*ltt tt*ttca#*l**tt*lt AR C S Ak Aok oKk Kok
ok *e FINCH o * t * * CALCULATE *
#INIYIALIZE 1/0 # -k . - * RELAT!VE DIS * SET * EXTENT LIST *
ND *-- eX*¥e ENTRY FROM o¥eoee * ADDRESS (TTR) *X-..-..-.* UP BLOCK LOAD * * LENGTH AND *
* CHANNEL *e ok tFUR FIRST TEXT t X t * PLACE IT IN *
* PROGRAM(S)* # *e . ¥ - * EXTENT LIST %
R P e e e e *e ok tt*tt#tttt**#l**t - *ttltttt#*##tt*tt ook ROk KoKk KRR Kk
* . . .
e OVERLAY . - -
e SUPERVISOR - - .
- FETCH « LOADING - .
* 3 CHANNEL . .
PROGRAMS MINOO6 X MINO10 X X
FOR PCI ttt*toz*mt*ttt*t* Aok Rk D3 KAk Rk kKK ***#tDA‘t*‘ttt.** Fkk ok kDS KAk Aok ok
* EXTRACT l SET P * CE * CALC CONTROL *
* RELATIVE DISK t CHANNEL * * *SECT!DN LENGTHS*
*ADDR (TTR) FOR *........xt PROGRAM. 108, * -..--#CDNTROL SECTION* ST N
* SEGMENT FROM % X * EXECUTE EXCP, # ADDRESSES *DRDERED URIGINS*
* 0 IST * - * AND 1T * SCATTER LlST t * IN
A e e e . st*ttt*txtt*xt*xm Aok AR oK kR Kk t***t*i*t**l*t***
. . X -
eccssssee . . .
- . . .
- N o . .
- . X . -
- - ke . X
HAERRKE ARk Rk A OKE 2 kR K KRk E3 *e A AR K E AR KKKk Hok Rk E S Aok ok Rk Aok Kok
SET * *TURN ON °'FETCH * . *o *FROM ALLOC ADDR* * *
*CHANNEL PROGRAM% * LAST IND' IF * «*¥WAS *'FETCH *e YES * (GETMAIN) AND * * PLACE CONTROL *
* TO READ RLD * X* NEXT RCD IS * *SCAT/TRANS TBL 4% *SECTION LENGTHS*
*AND/OR CONTROL * * LAST, SET UP % *CALC EACH CONT * *IN EXTENT LIST %
* RECORD * * PROG FR CTRL % - % SECTION ADDRe * * *
EEE R L e T . Aok Rk KRk Kok Kk - Aok kKK Rk Rk Rk ek ook ok ok oK KRk oRoK
X - X . X -
. . . - B -
- . . - . .
-
« NO . - . . -
o¥a - «%*e CONTROL - X
F1 *e F2 . #t#t*FS*t**#t*t**
.# *e ¥ *o . - *GE TMAIN
YES *e . ok *o NO o - . . Hm K K e e l
.o---‘. LAST RECORD % - *e RECORD TYPE e*¥Xeoocooooke ok - eecseccccssscccceee*¥GET STORAGE AS *
. . - - . - * - NEEDED FROM. %
. *e ok . *o ok . *HIERARCHY 0 + 1%
. *e ok . *e ok - ddck kKRR KRR K Kok Kk
- * . * RLD -
- X - . - -
- . . cececscscsens
. . . .
. - . .
- « NO - - X -
- oke «RELOCATION X ok RELOCATION -
- G1 *e . ARARRG2 R KAk KRR R KR G3 *e tt*ttsolt**#tt*tt .
- .t *o - * * .‘ .
- YES e * ADJUST VALUE * RL. *. YES * ADJUST VALUE t .
- t. RLD/CDNYROL c‘--...o * OF ADDRESS * ..-X*.PROCESSING TD.*-------.X* OF ADDRESS * .
- *+ RECO * CONSTANTS * - *e BE DONE o% CONSTANTS * .
*eo .t * * . *e . * .
*o o¥ Aok ok Aok KoKk Kok Rk . *e oF koo ok KK kKoK .
- * - . * NO . -
- x . - - - .
- eesccccccscscscsccccacacane
. . - . .
- . eecescceccccccsccscccccscceXe .
- . FREE o%+ BUFFER .
. ko H LRk Aok Rk - ook K okH 3 ook dok ok Kok H4e %o ok Aok H S dokok ok K Rk ok K .
* * . * * ok *e * * .
*_ WAIT FOR * . * o *e YES * WAIT FOR * .
- *THIS BUFFER TO *eee @sececsscccsscscessXeXeok BUFFER TO BE * *e LAST BUFFER e*eeccewee X¥LAST I/0 TO BE * -
- * BE FILLE * - * *o ok * POSTED * -
- . * * *o ok * * .
. B R LT L . Rk Rk Rk ok ok K *a ok ook ook ROk oKk Rk .
. - x * NO . .
- . . - . . B
- - . . . cececsceceXeXososoonoans
. . . . - . .
. - . .
NO - « NO -
e MINO18 - . ok MINO30 - X
- *a . Jy3 *e #*#**JA‘*‘&‘***## o RHAOKK IS RR K KKK KK
- .t *o ok *e . COMPUTE
- *e YES -VES - e *RELOCATED ENTRYx
- *.PRIOR BUFFER ¥ eceeescsessasccssscscsassasscssssXaske BUFFER FULL ok *BUFFER DU!NTERS:...- o *POINT, INITIAL-%*
. . uLL * X * * e « *]ZE SEGTAB FOR ¥
- - - t. .t * * - o *0OVERLAY PROGRAMX¥
. *e ok . *e ok ook ook Rk KKk o e REEERRRERKERRKKRK
* . * PR .
X . X . .
. -
. - - eXeooeeseccscscscccecocncsan - . .
. . . YES . YES PR .
. . o ke o ke ke o« . .
- RRRRRK | RR R ARk K2 *o K3 *e K& ke o . X
. * * ok *e -k *o .« e FHok R KS kkokk koK
. * * NO o% *o YES <% *e NO ok P *
* EXCP *Xeo e*e BUFFER FULL e*Xeeo ee*e1/0 COMPLETE o%X RECDRD READ .*X--- .« % RETURN *
* * . . . * *eo * . % *
- * * *eo - *e *o . kR kR oKk oK ok oK
.] *e ok .
. * .
. .
- .
P R R R R Y

70

Chart 10.

FokkkkB L Rk kkk kK
* PUT *
* CCW _IN NEXT *

PC1 APPENDAGE

EELETVELEL LS LSS
* *
*ENTRY FROM I0S *

Fokdkokkdokokkdok kokkok

¥xs 00000

o ke
B2 *o
¥ t.
YES

*CHANNEL PROGRAM*X..---...*-CCV IN RECORD.
t

* RELOCATE ADDR

*
*************#***

xEXe 000

oke
c1 *o
ok *eo

- -
*a ok
*o ok
YES

Xe oo 04 ¥
.

*****Dl********#*

SET CHANNEL *
PRDGRAM TO READ
* TEXT AND STOP *

* *
*kkkkkkkk kR kkkkkk

-
-
-
-
-

« N
LAST RECORD <%
*

. .
*e *
NO

EXe 000 n
.

*
-
-
-
-
-
X

*xKkRRD2 Rk hkkkkkkk
* *

* SET CHANNEL %
*PROGRAM TO READ¥
* RLD AND STOP *

* *
Rk kRERE kR Rk Rk kK

RN

-
-
X
*
E2 *e

- *e
«* BUFFER *o
* AVAILABLE

.
*a - ¥
*e o¥

s %

seccecceccsecccce Xe
.

AR RF2RR R kR kKR k
* *

* REPLACE NOP *
* WITH TIC TO
* NEXT CHANNEL *
* OGRAM *
ok kkk ko kkk kR kk

YES

*eeooe

* POST
eeeee X¥LAST RECORD ECB¥*
* *

PCI and Channel End Appendages
(Described in Chapter 5)

HkkkRC 3 Rokdokkkkkokk
* *
*

* *
kR Rk Rk kR kR %

e et esessae

-
.
.

X

*****EB**********
* POST ECB
* TO ALLOW

NECESSARY
* RELOCATION TO

* B ONI
ok kdok ok ok ok ok ok ok kK

EX XXX

Xe oo

*****FB**********

ATE
*CHANNEL PROGRAM¥
POINTERS

*
**************i**

.
X

kAR KGI kkk kK kXK

* *
* RETURN TO I0S *
* *
Aok kR kdok Rk kAok Xk

CHANNEL END
APPENDAGE
KKK A Gk KAk kK
* *
*ENTRY FROM I0S *
e 3 e o e o ok ok ok ek Kok ok

Xes oo

RS2 d-TE2 S22 LS
* *

*SET UP RESTART *
* OF CHANNEL *
* PROGRAM *

*

o ok ok Rk ko ok R kok

.
.
.
.

CHA -
OCCURRED BEFORE
PCI APPENDAG -
COULD CHANGE -
NOP TO TICe -
-
.
B
-
-
.
N -
esee* END FOR LAST .
- BU -
. -
- -
- .
- .
- .
- - .
. . .
- . .
- X .
- *kkkRESRRRRER KRRk .
- * * -
- * POST * .
- *LAST RECORD ECB* -
- * * .
- * * .
- kR R R Rk kR ok ok koK -
- . .
- - -
. . .
. - -
- - -
- - -
. . .
. X X
- HRRRF 4 RRk kR kK R RRF S ddokkok kK
- * * * *
- * NORMAL RETURN * *RETRY RETURN TO*
- 10s * e}
- *#****t*t*t**** ookt ko ok ok ok ok ook k
- X X
- . -
- -
- .
B -
- .
- -
- .
- .
- *e .
- ok NEXT *o YES .
eX¥ o BUFFER -
*o AVAILABLE %
- -
*o ok
*

Charts

71

INITIALIZATION

L T T I T O T I B A)

E

t
*

CHECKS SEGWT *

RRDR* REQ TO SEE IF %
eee* REQUESTED SEG *Xee

e * WILL OVERLAY %

o *REQUESTING SEG *

. .
X ktokokokokok Xokokokokok koK Kok *eo o¥
‘** . *
-
H3 * .
* .
EEE L]

L T R B B B I I

s s
Chart 11. Overlay Supervision Control Flow
(Described in Chapter 6)
16C045
#iA3t*tt***
* FROM
* SVC SLIH t
ERES IS S L2 T2 dkkk
- * *
* B4 *
* *
. kK
: .
. :
- .
1GC037 X X
AR AkRRB2 Rk kkkkkkkk KRR AKBI kk kR kK okokodkok B4k ok Kk ok ok ok ok ok
EEE RIS EE 2 L2 L] *CHKS TO SEE IF % * EXTRACTS ADDR * * * Hekk kB S Ak ok ok ok ok K
FROM * *REFERRED TO AD-% * OF CURRENT * * RESTORES * * *
* SVC SLIH * eeeee Xk SVRBy ADDR OF % * REGISTERS *eooe X¥* EXIT *
* * *SEGTAB AND REQD* * * X *
ook koK Rk K kKK * SEG'S NUMBER * * * - Aok ok o ok ok ok ok koK
e o e ok e ok ok ok ok ok Kok ok Aekokokok ok ok ko ok ko ok Rk kK .
SEGLD,SEGWT . ook ok
- * *
- * BS %
X * *
L2 kK
*
* BS *
* *
L E L
RESIDENT OVERLAY SUPERVISOR 1 —-— IEWSVOVR
NON—-RES IDENT OVERLAY SUPERVISOR 2 —— IEWSVOVR,s IEWSXOVR -
TEWSXOVR ONLY -
OVRL18 -
*tt*tDz***t#**xtt -

.

.
-
-
.
-
.
-

®ecccccscccecssccceccccseXeXeoooooscscseccccscccccncns

-

-
-
-

-
-
-
-
-
-
.

s ssscac

-
-

-
UPDATE TABLESe.

.

OVRL30 OVRL40O

*e t**#*FB*******#'*
* RESETS SEGTAB *
*STAT INDRS FOR *

esee Xk OVRLD SEGSs *
* ENTAB ENTRIES *
IN CALLER CHAIN
e e ke o ok ok koK ok ok Ok ok ok

% ANY -
ok TABLE *eo
N

*
-
-

Xe oo

t***#GS***t*t***t
*OVERLS8O

-—*—*—*—*—*—*—x
* COMPUTES AND %
*VALIDATES ADDR *
OF SEGTAB ENTRY
Aok koo Rk ok Kok Kk Kk

E

.
-
-
-
-

*okxk

* * R
* H3 *eXeO
* * oR
kXK -

e oK H 3k ok ok ook ok
*

sses s

SETS
ERROR
* CODE
*

EX XXX

ook o o o koK ok ok K ok ok kK

X IF
+NECESS ARY

*HIERARCHY INFO *
*IF REGIONS THE *....x* B4 *
* SAME OR ENTAB *
*1S IN ROOT SEG *
Aok ok ok ook Aok ok ok ok

**t‘

- o

- - * INTERPRETER

- - Aok ook ok Rk ok ok dokok ok ok

- - XR

- . LeE

- - 1eT

- - NeU

- o KeR

- X N

~ OVRL 60 oke X

- *eo HRES Kok kK

- ok *e * *

- ok WHERE *eo SEGWT * ESTRAN *
*e WAS ENTRY e¥eeee * INTERPRETER %

- *« FROM ok - * (IEGTTRNO) *

- *a ok - * *

- ¥eo ok X Aok Kokok ok ok ok

- *1GC045 Xk K

- «(ENTAB) * *

- . * B4 x

- - * *

- - KKk

- X

- Aok A o 4 %ok ek ko ok ok ok

- * UPDATES ENTAB * t*t*

TERMINATION

L T T T T A A I

dokkkk) 1 Rkgdokkkokkk
* MARKS SEGTAB *
*ENTRY+ SUBSTI- *

AL O
Aok ok kK Kok K ok kR ok ok

AR] Aok ok ok
*FETCH 09%
K F— k= kK=K — K
* (IEWFTMIN)

* X
*LOADS REOUESYEDt

* SEGMENTS
t*t#*‘t*****#

SEGMENT LOADING

¥Xeoeooeewee¥MUST BE MARKFDa ¥

eFOR LOAD—e
*e ING o

*e ok
* NO .

.

.

.

.

-

OVRL50 X
e ok 2 8k ok ok ok ok Kk ok

* SCANS SEGTAB *
REQUEST LOADING¥

.o X¥ OF MARKED *
* SEGMENTS *
* *
EE RS R LS s)

L T T O B O}

—SVC ENTRY AND EXIT PROCEDURES ARE SHOWN ON CHART 02

L T T T I |

Chart 12. Time Supervision Control Flow
(Described in Chapter 7)

IN SYSTEMS WITHOUT
A HARDWARE TIMER

AERKC 1 RRRRKRREK HRRKC2RKRK KKK AR HRAKCI R AR K HREKCS H XA A KAA K
* FROM FROM * FROM * * FROM
* T/E FLIH * * SVC SLIH * * SVC FLIH * * SVC SLIH *
* * * * * *
ARERR KRR AR AR AR AAK KKK AEKRERRRRRA KK AR A AR
. . - -
- .
- . . .
. . . .
o . . .
. - . .
. - . .
- - - .
. - . .
. . . -
. . . -
. - . .
. . . .
. - . .
. . . .
. . . .
. . . .
. . . o
. - cecsccccccee .
. - . .
. . . . o
IEAOTIO0O0 X IEAOSTO0 X IEAOSTO0 X IEAORTOO0 X IEAORT10 X
PR L T EEES S S LSS SRS S L2 Ekkkokkkkk kR kR kR ko kk t*t*'EA**t**‘tl*l #****Es*****‘*“*
$TIMER SLIH *STIMER * *TTIMER * *TIME *TI M
----- #—t—#—t—#—t Hm K K e e K K K K e K A e e e e e i i S bobl eSO
*UPDATES T IneR. *SETS TIMER * *RETURNS INTERVAL * * OBTAINS * * OBTAINS *
*POSTS ECBS. H *ELEMENT AND EXIT * *LEFTe MAY CANCEL * * DATE AND * * DATE. *
$QUEUES AND DEQUEUE S% *ADDRESSe USES * *BY USING T/E SLIH * * TIME« * * *
*TIMER ELEMENTS. *T/E SLIH TO * *TO DEQUEUE. * Rk KA R AR KK FA KR AR AR KR KK
*QUEUE AND DEQUEUEe * * % . *
ok ok o OK ek R Rk ok R koK K - . -
N . . .
. . . .
. . - -
- . . .
. . . .
- . . .
- . . .
. . - .
. . o .
. . . .
. . . .
. . . .
. . - .
. . . .
. . .
. . .
- . .
. - . .
. - . o
X X X X
HAREKG L RKKEKKRRK AREKG2RKAKK KRN KK GARKAEAA KK HEAKGS KRR RKKKK
* * * *
* T/E FLIH * * EXIT * * TYPE 1 EXIT * * EXIT *
* * * * * * * *
Rkkok kR kR k LRSI S22 22 2] EEER S SRS E LS TS kkkk kR RR KRRk kK

SVC ENTRY AND EXIT PROCEDURES ARE SHOWN ON CHART 02

Charts 73

Chart 13.

SERO Link Library Module Control Flow

(Described in Chapter 8)

FERKAL K E KRR
* *
* START *
* *

ok o o Ak o KKK

-
*o
-
- -
* YES -
- .
- -
- .
- »
- .
X
ko ok C 1 ok dkokok Kook Kok -
* * -

* *
*DIAGNOSE LOCAL *eeeecas
* STORE *

* *
o R ek ok ook ok ok Rk ok ok

74

e¥a ke
Ak kB 2 Aok e ok Kk ok ok B3 *eo B4 *o *kkkEBS Kk kokkkkkkk
* * ok *e ¥ *e *
* SET * . ¥ *eo 65975 ok *e NO * SET UP RECORD *
X¥ UP SERO PASS ¥eeececceeeX*eMODEL NUMBER e*eceoew eX*e LOCATION e¥e .o X¥ ENTRY FOR *
* DSECT * *e % *e S50=FF %

* MACHINE CHECK *
*

* * *a -k - *e ok *
ek ok ok ok ko kokok R ok ok ok *e o¥k - *eo ok e e Aok ok ok ok ok ok ok K ok ok Kok
* 40,50 . * YES -
- - - -
- - . -
- - - -
. - . -
. - -
X X X
kR RKCI Rk kR Rk Rk Fokk Rk Codkkkkkkkkk H Ak C S dkdkkok kK kK
* * - * SET * * *
* LOAD * - * RECORD ENTRY % * LPSWe A *
*POINTER TO CVT *ecesee * FOR CHANNEL *esececeeeX¥PSEUDO MACHINE ¥
* MACRO * *CHECK (INBOARD)* * CHECK ENABLE *
* * * * * *
oo 3ok o e ok ok ok ok ok K ok ok e o ok ok sk ok okok kokok k ko ok ok ok dokok ok kokok koK
-
.
.
.
-
ko X
etk D 2 e ke Aok ok ok Rk ok ek ok kD 3 e o ook e ok ok ok D4 *e HREERDS EER KRR K KR
* * * GENERAL * ok * o * *
* LOAD * * PURPOSE * 65,75 ok *o * UP MACHINE *
*POINTER TO CVT *Xe «*REGISTER PARITY*Xe ee*XeMODEL NUMBER %X eee* CHECK HANDLER *
* MACRO * * TEST * *a ok * ADDRESS *
* * * * *o ok *
ek ke kok ok ok ok ok ok kokok okok AokoR ok K Kok R okok ok ok ok *e ok e Aok ok ok oKk ok kR Rk ok
- * 40450
. -
. -

eXeoaceseosccscoscccscensssccscccccnsccnccccscscsccccssccsacs
-

X
A RERKE2 KRR KR RIK P T
* * * *
* ADJUST * #LOAD REMAINDER #
% CCW ADDRESS *eeeseceeeX*OF MODULE INTO *
* * * CORE *
* * * *
e ook e ok ok ok okok ok ok ke ok ek ok o ok ok ok ok ok ok ok
.
.
.
.
X
ke
F3 *.
ok *o
50 % *e 65,75
esee*eMODEL NUMBER e¥ececcssccsescssces
. *e o -
*e ok .
. *e ok .
. * 40 .
. . .
- . -
. . .
. . .
. X .
. ke X
G3 e *hhkkKGE R kR kk Rk kkk
. o % . * *
. ok %+ YES * FLOATING *
- %e FLOATING o¥ececseseX*POINT REGISTER *
. *e POINT o% * PARITY TEST *
. - - *
- *e o% kR d kKRR ARk
- NO .
.

. -
. « NO
X ke
ook e e H 3 ok ool gk ok ok Ha *eo
* * ¥ *e
* GET * ¥ (] *o YES
eeseseccccscccsseX¥ UCB ADDRESSES *eeeeceeaeX*¥e UNIT ACTIVE o*cenceecccceccscscocs
- * * . . -
. * * *eo ok .
- Fokok ook Rk kR ok Rk Rk ok *e ok .
0 * -
- -
- -
- -
- .
« NO X
o¥e o¥ao - ¥e
J2 Aekok koK 3k kdkokk koK Rk Ja *eo Js *e
-k - * * ok *a ok *o
ok END *q * EXTRACT * YES o% CUA = *e NO <% *o
- eees¥FIRST CCW, FAIL*Xo ee*e CUA DOF 1/0 e¥Xeoeososeseke CPU FAILURE <%
* CCW AND CSW * *e OLD PSW eo% *e ok
* * * o ¥
Fekokokok ok ok kR Rk Rk *o ak
* NO

-
eeecccccccccccccnccvccccncnccccscnccccXeccccsccscne

NOTE CUA = CHANNEL AND UNIT ADDRESS

Chart 14. SERO
dkdkokkk
*14 %
* BlxX
* %
*
.
X
ke e Xe
B1 * o B2 *o
ok *o .* t.
«¥% MACHINE %o NO ok
* e CHECK Xkeo FAILING CUA -
%o INTERRUPT o % OUND ok
- ok *- -k
e ok *e a¥
* YES * YES
. .
:
eXeoeo
.
X
Aokk Rk C |k kokkokokkkkk KRR KRC2 Rk Rk kkk
* * * *
* EXTRACT * * *
* PROGRAM 1D, ¥eeseesee X¥READ RO RECORD *
* DATE»» TIME * * *
* * *
e ke o o ok e ok e ok ok ok ok okok ok Fkkkkkkkkkokkkkokkk
X
:
:
:
*t***DQ*;********
* *

* RE-ENABLE *
*MACHINE CHECKS *
* *

* *
e gk ok ok ook ook R ok kokok

X
-
.
-

kkkE]k kkkkkk -k *o
* ADDITIONAL * FIRST *eo
*MACHINE CHECKS *...-....X*-MACHINE CHECKe ¥

-

*************** *. - ¥

*eo o¥
* NO
-
-
-
-
-
.
-

.
.
s
N
x

kAR EEG2 R kkkk Rk kK
* *

* SET UP *
*INTERFACE WITH *
* SEREP *

* *
Ak kkkkkkkkkkkkkk

Aok ok okok B3k k kokok ko ok
* *
NO * SET *
seecesse X¥FLAG IN RECORD *
* ENTRY *
* *
kR ok Rk Rk kR kR

-

.

.

-

KRR RKCI Rk KRRk kK
* *
* READ *
eeeecese Xk HEADER RECORD *
* *

* *
dele ook R K Ok Kk koK ok

#Xe o000

o¥ao

03 *o

-k *a
¥ HEADER *e YES

*oRECORD SAFETY o
«BYTE = FFae¥
*o ¥
*e o¥
NO

RS

.
-
.
-
X

HREKKRGI Rk kkkkkkkk
* SET *

* UP 10S *
WAIT-STATE CODE
* X*FO7" *

* *
ok kkok R kkok Rk kkk k%
B
-

ecccenscccXe
.

X
ARk ok kH 3 ok ko ok ok ok kokok
* PRINT *
ERROR MESSAGE
* *

ek e o ok ok ok kK Kok ok
.
-
.

Link Library Module Control Flow (continued)

kR kKD R Kk F Kk kKK A RARDS ok kk ko kok
* * * *
* UPDATE * * WRITE *
X* SEEK ADDRESS *eeeceeeeeX* RECORD ENTRY *
* * * DATA *
* * * *
Aok kR ok ok kK Ok kK Aok kR dok ok kR kK
-
-
-
.
-
X
o ke
“*EO#*##*‘** E5 *o
* WRITE END * NO .# RECORD

iUF FILE ON LAST*X-..-.--.#-ENTRY ON LAST.*
*e TRACK %
*o

-¥

********t******#* *e ok

- * YES

- -

- -

. .

- .

- -

X X
****tFQ********** ****tFS#***#*****

* WRITE END
#UPDATED HEADER #X....¢...*OF FILE DN LAST*

**********t**t#**

“**t*****t

Xe e s oen

kxR GEK kR kk Rk kkk
* SET *
* up_10S *
WAIT-STATE CODE
* X'FOS* *

* *
Fedkkkkkkokkkkkkkkd

Xess e

Fkok ok Rk HA Rk ok kR Rk Rk ok
* PRINT END *
OF JOB
* MESSAGE *
*Ekkkkkkkkkkk
-

.
-

-
ececcscsssccvsccsccsncsccocXe

X
RS I N EL L2222 s
* *
* WAIT STATE *
* *
ek ok Rk R kR Rk

Charts

75

Chart 15.

76

SER1 Control Flow
(Described in Chapter 8)

EREKA2 KRRk Rk Rk
* *
* ENTRY FROM MC %
* w *
B e
-
.
-
-
.
X
FRKEKB2REKKE KR ERE *AKKBI R KKK KKK K
* * * *
* SAVE * * LOAD BASE *
*REGISTER 13 IN *eeeeeeeoX¥k REGISTER FROM *coaee
* LOCATION 372 * x * NEW MC PSW *
* * - * *
P T e L T T
-
-
.
FRERKC2 Rk R A KKK . Sk kR C 3 kg ko ko
* * * *

CLEAR POTENTIAL
X% BAD PARITY IN *ceeceoee
* ALL REGISTERS *

* CLEAR *
*PENDING MACHINE*X ¢ oo
* CHECKS *

-
- * * * *
. koo b okok ok Kok K K K KoKk Aok R R ROk KRRk ok ok ok
-« .
- .
- -

. B
. ccece ccsece cese
«MODEL S50 MODEL 40
- **‘**DZ***‘****** ‘****DB‘******#**
- * COMPACT GP * * STORE GP *
. * REGISTERS IN % * REGISTERS IN %
- * RECORD ENTRY % * RECORD ENTRY *
- * * REA *
- ek ok ook ROk ok ok ok ek e ok ok ok ok ok kokok Rk
- - -

. . .
- - -
. - .
- - -

. . X

. X o ¥a

- Rk R KE2 kokokdok kokokkk E3 *e

- * MODIFY * X *eo
- * DIAG. * ok FP *e NO
. *INSTRUCTION FORX* *a REGISTERS ekeoe
- * LS SECTOR 2 * -AVAILABLE.*

- * * X
- Ak o o ok ok ook ok Kok ok t. ¥
- . * YES
- - -
. . -
. . .

. .

MODEL SO X X

- koo R 2 ok okok Rk dokkok Aok ok F 3 dkokokokok ook Kok
- * * * *
- * DIAGNOSE * * STORE FP *
. * LOCAL STORE * * REGISTERS IN *eeeces
- * SECTOR * * RECORD ENTRY *
. * * * AREA *
- ok kokok kR koK kR Rk k ek ok Kok dokkkok koK

Aok ke kG 3 ko dokdkdok Kk
* *
* COMPACT FP
X% REGISTERS IN
* RECORD ENTRY

* AREA *
TRk kkkok kR Rk R kX

ea¥a
ek okok ok H 2 kok koo Kok kK ok H3 *o
* * ¥
* PARITY TEST * NO «% OLD MC *eo
* ALL OF MAIN *X-o-.--o-*oPSW = TO SUP e¥Xeeee
* STORAGE *e MODE ok
* * *e -k
ERES RS R RS 22 o o¥
. * YES
- -
B .
. .
X .
* -
J2 *e .
<% BAD % .
ok PARITY X
*e OUTSIDE PP .
- AREA -
*eo %
*e ok
* NO
-
-
.
X
HRK2RKkEKK KK KKK 3 kkkokkkk
* * * *

* EXCP TO
* PURGE I1/0 *eeooesee Xk READ HEADER *ececees
* RECORD

* *
R 2L R 22 L 2] kR kR kR Rk

ke
B4 *eo
* *o
¥ CHANNEL *. YES
eeeX¥kea FAILURE e¥eesesceccsccscccce
*eo - -
*a ok -
¥ -
* NO -
- -
- -
. -
. .
- -
X X
ERERECHRK R R KK KKKk ek ok ok CS A ok ook ok ok
* *
*MDVE LUG AND MC# * MOVE LOG AND %
PsSw TO * CSW TO RECORD *
* RECORD ENTRY * * ENTRY AREA *

* *
e o At ok ok okok ok R ok ok ok

AREA *
****t*x*****t****

escocce

Xe s e e

X
kA Kk D4k ok ok kkok ok HokkkkDS dkdkdok ok ko kkk
* PARITY * * MOVE *
* TEST AND SAVE * * FIRST AND *
GP REGISTERS INx *FAILING CCWS TO*
* RECORD ENTRY * %* RECORD ENTRY %

* EA * * RE *
ook ok ok kkok Rk ok ok kX ke o e ke ook ook ok ok ook

- -

Xo oo
DR

X
#****EA********** Aok kokE S Aok ok ok okok ok okok
I * MOVE

* CUA FROM I/0
OLD Csw TO

Y
* TF¢T AND SAVE *
*FP REGISTERS IN% *

EE TR

- * RECORD ENTRY % * RECORD ENTRY
- * AREA * * AREA
. ok ok ok R kkk Rk kkkk A ok ook ok ok ok ok Rk kK
- - -
- - -
- - .
- eXee eecesccccccs
.
X
FokkkkF 4%k kK kR kdkok Kk ek kRS Aok ok ok ok kokok
* MOVE CUA *

* *

* MOVE DATE AND * * OF ALL ACTIVE *
eeX*TIME TO RECORD *eeeseeeeXk I/0 UNITS TO %

* ENTRY AREA * * RECORD ENTRY %

-
-
X
-
X
-

* * * AREA *
e ok e e ok ok ok ko kokok ok ook ok kok gk dokk ok Rk Rk ok
.
.
- .
- .
- -
- .
- X
- KK KGS kokk gk gk ok
. * MOV *
* CHANNEL TYPE *
* ASSIGNMENT TO *
* RECORD ENTRY %
* AREA *
e ke o e e e ok ke ke ok ok ok ok ok
.
.
X
¥ o o ¥e
Ha4 *eo HS *e
¥ *- .
NO «% IS NO -* CHANNEL *eo
o--u*¢SCHEDULER IN n*Xo....-..*- FAILURE -k
.0PERAYIUN- *eo o ¥
*o %
o - *eo o
* YES * YES
.
.
.
-
X

Xeoes s rs s essssssssassssss e

ok o
Ka *e
ok
. ES
ceeXka l/O FA!LURE -*....-...........X
- .
*o ok
* NO
.
X
ok Aok
*16 % *16 *
* ASk * Bl
* % * %
* *

Chart 16. SER1 Control Flow (continued)
AERRKA2 KRk KRk kkk HEERRKAT KRRk kR KRRk KRR EAGRER KRR Rk
KEREALRERRERKKNK * * * * * *
* S * LOAD BASE * * * * SOUND *
* AND THIRD MC *ow eX* REGISTER FROM * eeeX* HALT ALL 1/0 ¥eoeseceeX¥ CONSOLE ALARM *
* * LOCATION 372 * . * * * *
REEER KRR KRR K * * - * * * *
Rk kR Rk Rk Rk kR kK - xx * kK
: . .
: : :
: : :
X - -
- *e - X
B2 *q - Hokokk kB Gk kK ok ko
¥ - * *
¥ e YES - * RITE *
*ea THIRD ENTRY o*o Xe * MESSAGE 10 *
. ¥ - * OPERATOR *
K kkkk *o ¥ - * *
*16 * *e o¥ - ekok gk ok R ok kR Rk R Rk ok
* Blx*x * NO . -
* % - - -
* . - -
. : . :
: : : :
- X - X
X e¥e . o¥e
R RC LRk RR KKK cz *o . ARk Rk RCI xRk kkkkkkk ca *ae
* * - *e - * * - * e
* * ¥ USING *e YES - * * NO o% RECORD *o
* HALT ALL I/0 *Xeae %e STAND ALONE e*eceees *¥SETUP FOR SEREP*Xeeeeeeea*x ENTRY WRITTENS*
* * - *a 1/0 - * * - -
* * *o ¥ * * * o ¥
ok ok Kk ko ok Kk kR kR - *e o ¥ wkkokkkkkkkkk Rk kk *e oXk
- * NO - * YES
: : .
: : : : :
: : : :
- . - eXeesssesssecccsscccncscsnns
- - X .
X - ke -
ARk D I Rkk Rk kkkkk - D2 *o X
- * - ¥ *o KERAKDI ¥k kKRR KKKk
* READ * - ¥ *eo
* HEADER RECORD * «HEADER RECORDe * * WAIT * ccesa
* * e READ -k .
* * *o - ¥ o ook ok ok ok Kk R Rk ok -
ok Rk R ROk ROk KR Rk R kK *e o¥ .
- * YES .
: : p
: : :
: : :
- @eesesccsecsecsncsccscscscscsnccsssXeccessccncsccsnccsccacsnsos
X -
e¥e X a¥a
E1 * o *ERKKE2 IkkkkkkkRkk Ea *o
¥ *ao * * * * ok *o
ok *e NO * UPDATE * * YES
%e I/0 FAILURE oe¥eseesseseXkx HEADER RECORD * * HALT ALL 1/0 *Xeosooooe
*o ok * IN CORE * * * - -
*o ¥ * * * *a ok
*e o¥ EE L L2 TS ok *a ¥
* YES - - * NO
. : : .
: : :
: : : :
: : : :
- X - .
- - ko X X
- F2 *o AR RAF IRk RRkkk kK *RF 4Rk kkkkk
- ¥ *a * * * *
- NO o% *e YES * WRITE * * EXCP
eXeoessssecscccsoee* e RECORD ENTRY e¥eseseeeeaX¥ RECORD ENTRY * * WRITE END OF
- *a FI ¥ * * * FILE
- *a - ¥ * * * *
- . o Fk kR Rk kkkk kK ook ok ook ok koK K
- * -
: :
: :
: :
- X
- ke
- G3 *a
- ¥ *o
- * *a
- esessscace I/0 FAILURE o%
- *ao -k
- £ ¥
- *e ok
- * NO
: :
: :
: :
: :
. e¥a X
- H2 *, LRI R EEE LS LT S
- ¥ *e * *
- ES o% *e * WRITE *
eXesoeesecscscsccscseke /0 FAILURE e*Xeeeeoeseek*x HEADER RECORD *
- *o - * *
- *o -¥ * *
- *e ¥ EEEEI SRS S22 2222 3
- * NO
: :
: :
: :
: :
- X
. kkkokk J2kkk Kk kkkkk
- * *
- * *
- eecacccs <% WRITE END OF *
- * FILE *
- *
- Ak kkkokk kR kR Rk kR X
:
X
HRERRK 1Rk Rk Rk EREK 2 *k
* * * * *RRKK ARk KRR KRRk
* * * SOUND * * WRITE * * *
* HALT ALL 1/0 ¥eeveaseeXk CONSOLE ALARM *.0esacaaX¥k MESSAGE TO XeoowaoeeX¥k WALIT *
* * * * * OPERATOR * *
* ok ko ok ook ook Rk

* *
ERR L SR s e st 2]

*
P,

¥ *
esccsce*e 1/0 FAILURE

¥eecseooeee Xk

X
* DISPATCHABLE *
E

REKKKAS kAR KRR kkk Rk
* *

*Hw

UPDATE *
HEADER RECORD *
IN CORE *

*
Aok KR RO RO Kk ok
-

PRI

BS *o
-k *e
*

ok
*oRECORD ENTRY
- FIT ¥
*e ¥
*e *

e o e oo n
.

*KCS KKK KKKk
* *
* EXCP *
* WRITE RECORD *
* ENTRY *

* *
ARk ko Aok

TR

DS *o
. ¥ *e

-

*o -k
*e o ¥
NO

Xe s ey

AKES #okk Aok K
* *

*e * EXCP *
1/0 FAILURE «*Xeaoeseee* WRITE HEADER ¥
* RECORD *

* *
Fkkkkrkkk Rk

HRKKKF S kKK kK
* RESTORE TASKS *
*

* STAT *
Aok KRR K Ok Rk ok ok ok
-

PO

HKGS Kk Kk Ak

* *
* WTO *
* MESSAGE TO *
* OPERATOR *

* *
KRR KRR
.

PO

HKHS K kKK KKK
* *

* BRANCH *
* TO ABTERM *
* *

* *
R KK KKK
.

.

X
kK S KKK R KKK KK
*

HOUSKEEP
SER1 FOR
REUSABILITY

ERER
EE X 2

ko ok ok ok ok ok K ko ok ok
-

Xe oo s

Rk KS * Rk kK kR k
* *
* EXIT *

FRRRR KR KR KKK KKK

TO
DISPATCHER

.
.

R R I I A A RN S S R AP R R A A A I S AP AP A AP S N IR ST ST A TSP AR N

Charts

77

e Chart 17.

78

CHECKPOINT (SVC 63) Control Flow
(Descriked in Chapter 9)
*nt#tAztt*t*tt#*# tttxmA4**tt*x*t** **#ttASt*t**t****
KkERA L FEKKR KRRk *1GC0006C *#*t LD *1GC0S06C
o o K Kk — *—* * CHECKPDINT * t—*-*—*—*-*-*—*-*l/n
#ENTRY FROM SVC *eceescseeX* * A4 *...-X* HEADER RECORD #........x* ¥ooeoe
* * HOUSEKEEPING * * HR * QUIESCE USER *ERR.
B T L * * t*** * * .
Aok ok kR KRk Kok Rk *t*ttt*t**t**t*t* Stk Kok kK Rk kKoK .
- . .
o . .
. . .
- . .
. . .
X . -
¥ X -
B2 *eo F% kR BS Aok K ok Kk Kok -
o% ARE ¥ TR ERBI Rk Rk Rk *IGCOA06C .
«*¥CHECKPOINTS*e YES * k= = -
*o SUPPRESSPD e¥eseeoeee Xk EXIT ROUTINE * * WRITE .o
-k (svc 3) * * CHECKPOINT *ERRe
*. - ¥ **tttt#xt*t:*** * HEADER RECORD * .
*o ok stk ke ok Rokok Rk Rk ok
* NO RETURN .
- TO INTERRUPTED -
. ROUT INE .
. .
- .
X X -
o¥e . ¥e -
c2 *e 4mtt*c3**x**t**** cs *a .
¥ *e *0P ok *. -
ok Is *e NO *— *—*—t—x-*—x—t—* YES % .
*e CHECKPOINT oe*eceeeeseeX¥k OPEN * o-cooo*.END OF—VULUME.* -
*eDATA SET % *CHECKPOINT DATA% %o OCCURRED % .
*eOPEN o % * = * . *e o % -
*o o¥ Aok koo kok Rk kR Rk - ¥o ok .
* YES - - * NO .
. - . . .
. . . . -
. - . -
ccecccssccssccccecccccans - . .
o¥eo X - X .
t*t*tblt***tt*ttt D2 *o F ok ok kD3 koK k Rk ok oKk - *****os*t*t****** -
*1GC0106! ¥ *o * GET * - *I1GCO0D06C .
—x--x-*—*—*—# t NO o* Is *o * MAIN STORAGE * A e S R e = e *1/0-
* TEST FOR *Xesoe oe¥e CANCEL e*¥Xeee *AND INITIALIZE * - * WRITE DATA *eooe
* ERROR * *e REQUESTED e X * WORK AREA * - *SET DESCRIPTOR *ERR-
* CONDITIONS * *ao X * * - RECORDS
Stk ook ok ok kR Rok *e o¥ dokok ok ok ok k kokok dokok ok - ***#*****#***t*** -
- * YES - - .
- - - . .
. . - - .
- - . .
X . - X
ok - - o ke -
(31 *e - - ES *e -
¥ *e . - ok *e -
¥ - . YES <% *e -
%e ANY ERRORS e*XesveccccccscccceXe eXeoeeke END—OF-VOLUME * .
*e - . - *e OCCURRED o * -
¥ - - *o ¥ -
* . *e o¥ .
* YES . * NO -
. - . . .
- - - . .
- B - . .
.
- X - X .
- R RKF 2 kkkkokokokodok . **tt*Fs*****t**** .
- *1GC0206C . *IGCOF06C .
. T /0% —%k—dk =k =k~ % . k=~ *-z—*—*—*I/O.
ecccccce seeek BUILD *Xeoee - - * WRITE CORE ¥eooe
- ERR* 1/0 BLOCKS‘ * - - * IMAGE RECORDS *ERRe
- * READ JC . . *AND SUPV RECORD* -
- xttt*txt**:*xxxt* - . EE R E R L e .
. . - - - .
- - - - . .
-
-
- - - . .
- X e YES . X -
- . ¥o ke - o ¥e -
- G2 *e *t***ca***t*t**** ua t. . GS *o -
- **tt ok *o *IGCONO6C IS . .* *. .
. NO o% Is *eo Lttt Sk Dot St Sk St * NO .*CHECKPD!NT *e X YES -
- * A4 *X..u.*. CANCEL X * *Xeeseoeeeke DATA SET ON -*X.ooo.a.-*.END—OF VDLUME. .
- *e REQUESTED * * RESTORE USER * X *o TAPE - %o OCCURRED o * -
- :tx* *o ok *o ok *a . .
*e % HEEERRRIRK KR RRK KK e ok *o o ¥ .
* YES - * *
- . N - . .
. - . eececccccecssccccsessscrsscccaccesccsesscccaccssnns
X -
eXoeoescsesse0csecccccncsccscccccccvccccecccccsccscsns
X o ¥o
*ttttHl*tt#tt*#*# H2 *eo **t**HA******t#*t
1GC0QO06C . *eo *1GCO0S06C
— -—t—t-t—t—t—t CHKPT * dm K K Kk — t
* *o .---X*- GETMAIN FOR eeescecsssssssseXk WRITE CHKPT %
* EXIT ROUTINE * *e WORK AREA. X X * MESSAGE TO *
* * . - - * OPERATOR
sk gk ok ok ok ok ok *o ok . ***t*#*tt*******t
* YES - -
- . .
- - -
- .
. .
X - X
e ke . -*.
J2 *e Fodok ok J 3 dok ok ok ok ok *o *****JS**********
- ¥ *eo * WRITE J08B * ok CHKPT * o *CLOSE
% BPAM *e NO * CONTROL TABLE * <% OPENED *e YES e o K e e K — x
*e CHECKPOINT e*eeeseeseeX* TO JOB QUEUE, * *e CHECKPOINT eXoosooonae XXk CLOSE *
*eDATA SET % * FREEMAIN WORK * *¥eDATA SET <% *CHECKPOINT DATAX
*e . * EA * *e ok *
*o o% Aok ok R Rk ROk *a ok stk ok ook Kok Rk Rk Kok
* YES X .
- B . .
. . . .
. . .
. - eXeeoesececsceccccrccccccce
X - .
Fk Rk RK2 ko kokkokk . X
*STOW - FERKK GEERR KKK
D i et St S] * T
* STOW ¥eosoecee * EXIT ROUTINE *

* CHECKPOINT *

* ENTRY *
kR Rk Rk Rk Rk kR kkk

* (svc 3)
Hodokokok ok Kok sk kKoK kkok
RETURN TO

INTERRUPTED
ROUTINE

=

e Chart 18. RESTART (SVC 52) Control Flow
(Described in Charpter 9)
NOTE AN ERROR IN ANY

*kkkALkkkkkkkkk MODULE CAUSES XCTL
* * TO THE RESTART EXIT
*ENTRY FROM SVC * MODULE FOR ABEND
* SLIH *
kR kkkkkkkkkk

N

:

- * ALSO POSITION

- CHECKPOINT DATA

- SET TO F1I

- CORE !MAGE RECORD

x
t#***ﬁl*#**ﬁ**##* AEKRKB2RERRKRKKEKRK *****BB********** *****BA*‘***‘*#**
*1GCO00SB *1GC01058 * *1GC05058 *]1GCO0GOS8
X e t-t-t-t-t Kk K — k— K — kK *—t—*-t—t—t—*—*—t *—*—*-t-t—t-t—t-t

*RA kKBS K kk Rk
*IGCOI0S!
ek k= K Kk — K

GETMAIN STDRAGE‘------.-X BUILD CONTROL *........x* READ CIR'S ¥eooseseeeXk TE ¥eoosoeos Xk PROCE SS
*BUILD DCB OPEN LOCKS, CALCU- * AND SUR INTO * *!/D BLOCKS FRDM* *JFCB EXTENSIONS
CHKPT DATA SET # t LATE BUFFERS * STORAGE * CB*'S
LR AL S L L L L] Ak kkkokRkkk Rk kR ****#t*##ttt***#* ************‘**** Aok kR kkk ok kk kK
-
-
.
-
o
X
o ke o *eo
ko C L kkokkkoRk Rk cz2 *a #*‘*‘CJ*'**#&#**# Ccs *e
* * t. *lGCOKOS e¥% ANY %o
* NON—STANDARD * YES K —*—*-*—t—t YE S .*NON~DIRECT *e
* TAPE LABEL *Xeoo *.NDN—STANDARD .tx........* ADJUST DEB'S; *Xeeececcscccccccceccccccsccscccccscscke ACCESS DATA .
* ROUT INE * *e LABELS ok * ISSUE MOUNT % %o SETS OPENe *
* * o ¥ REQUES * - .
REL I L L L LSS *. ok **3***#**#**‘*‘*‘ *e ok
- * NO
- - .
- . -
- . -
eececcesccscccccccccscccans Xe -
- ¥e .
D2 *o *****DS*******### -
ok *eo *IGCOMOSB .
% RESIDENT %o YES *—t-*—*—#—*—t—*—* -
%eDIRECT ACCESSe*eseeccseX* ADJUST DEB'S; *Xeeceeceeccecccccccccscscsosccccccsccscscscccscscnccns
4DATA SETSe * TIOT FOR D/A %
*e ¥ * DATA SETS *
*e ok kR kR kR R Rk kkk Rk
* NO .
- -
. .
. -
- .
- X
X o ko
R RED Xk kok ko kK 63 *eo
*16C0L0SB * ANY *eo
ek e R R YES .*NON—DIRECT *eo
* WRITE TAPE *e ACCESS DATA %
*HEADER LABELS, * *eSETS OPENe*
* PRIME BUFFERS * *e -
Ak ek ok ok ok ok oK ok gk e ok Kk *e o¥k
. * NO
- .
- B
- -
X .
o ¥e X ko
*a *****F3#********* Fa *eo
o% ANY %o *IGCONOSB ok
«* DIRECT %o YES *— *—*—*—*—*—t—t—
*e ACCESS DATA ec*eeseseeeX¥k CHECK FOR #..oo-o-ox*- DEFERRED -
%o SETS OPENe* *DELET ION OF D/ A% *o RESTART o% .
*o o ¥ * DATA SETS * *e ok -
*e o ¥ otk dokokok ok ko ok ok Kok Rk ¥o ok .
* NO NO .
- .
-
ecoce ecece ccece
X
KR EX RG24 dkdok ok ok kK Aeqek ok Kk G4k k% Kk ko Rk ok
*1GCOPOSB ok ANY %o *1GC0Q0SB
t-*—*—*—t—*—*—*—t YES «*NON-DIRECT *e o e o e e K e T K
POSITION *¥Xeeoeeesee%e ACCESS RESe oe¥Xeoseesecok PERFORMS *Xew
*TADE DATA SETS * %eDATA SETSae¥ * NO SERVICE IN %
*e OPEN o % * PCP *
tttt*#***‘**#***t *e ok ek ok ook ok ok ok Aok kokok ok
- * NO
- .
. -
- .
X -
o ke ko
H2 *e *'***HB#*******#* Ha4 *e AkRkokokHS kokkok ok kkok ok
«% ANY ko thCORGSB ok * o *PARTIAL RELEASE
e¥* DIRECT *e YES ok —*—*—*—*-* «*HAS OUTPUT *e. YES s e e e e e e e

%o ACCESS RESe e*eoeesseeXk
*eDATA SETSex

RECONCILE
* DIRECT ACCESS *

¥eesesseeXkeDATA SET BEEN
%« ENLARGED o%
*

ek¥eeeeceece Xk RELEASE DATA
*

ADDED SINCE

*
*
t
*
*

*

*
*
£d
*
*

*.OPEN o % % DSCB, DEB. * %o . #CHKPT WAS TAKEN¥
*e ¥ Aot ke ook ke okok Kok kxR ok ok Rk o ok e o e e ok o ook ok ok kok ok
* NO * NO .
- - .
- . -
- X .
o Xea cecen . . .
-
X
*kkkk J2kkk Rk rkkkk ‘****J3#t******** Ja * o
*IGCOTOS8 * *IGCOVOSB o *.
o o e e — K e Rk Lt B *—*—*—*—*—*—* ¥ *e NO
* ¥eeeweeaeX® RESTART EXITs *eeeeceoaX¥o ERROR e¥eesessccsccsssccccns
* RESTORE USER % *WRITE ERROR OR * *e o .
* 70 * #SUCCESS MESSAGE#* o* .
khkkkkkkkkkkkkkkkk e ok e kR ROk ok dokok ok ok .
* YES .
. .
M .
. .
. .
. .
X \ X
****KQ*****‘*** ko ok KS ok ok ok okokok %
*
¥ asERD ROUTINE * * EXIT ROUTINE *
* (SVC 13) * svC 3)
t*****t*i**#t#t e 3k ok o ok ok koK ok ok ok ok K
RETURN TO
INTERRUPTED
PROGRAM

Charts

79

Chart 19. Initial Program Loader Control Flow

(Described in Appendix A)

PREL IMINARY = ===————— e —
OPERATIONS AND CONDITIONS—

HAKKA LKA RRKKK
*SYSTEM LOCATED *
* ON A DIRECT- %
* ACCESS DEVICE *

R R s

Xeseaee

OPERATOR
Fkokk kB] KRk Kk koK kK
*SELECTS SYSTEM *
* RESIDENCE *
* DEVICE WITH *
* LDAD UN!T *

* TO BE LOADED *
Fekkkkk Rk Rk Rk Rk

Xeeooo

R R R R A NN N A RN N NN
*
o
m
-
»
3
o m 0zZTNO m n
2
m
»
»
*
R A A RN N NN]

#*lt‘Dl*tt**t***t
*

t PRESSES LOAD *
* KEY ON THE *
*SYSTEM CONTROL *
* PAl

L
AR KRR KR KKK KK
-

EEx

HARDWARE X
HRRKKE | kKK ARk
* SYSTEM RESET
tREADS lPL CTRL

RC
INPUT DEVICE

LR]

IN
ttttttttt*tttttt

IPL CDNTROL.

REC
t*tttFl***tttl*t*
* *

* READS IPL *
*BOOTSTRAP INTO *
* MAIN STORAGE *
HEEKK KKK KRR KKK KK

RN

BOOTSTRAP . X
HEKAKG] KAk kR Rk

IEAMAIN

FOR IEAIPL MODULE

EEE 2]

* %%
o
N

*

POERR

HE KRB 2 RAKKK KK KKK
*

*
CLEARS FLOATING
P0INT REGISTERS
* *

* *
ok Rk ook ok R Rk Kok
X
o¥o
c2 *o Aok C 3 Aok rRkok ok kR
* *e * MACHINE HAS *
- PROGRAM %o YES * NO FP REGSe *
*¥o INTERRUPTION o %o eeeee XXkRETURNS CONTROL *
*o -k * TO IEAPCRET *
*o ¥ * *
*a ok Rk AR kR KAk ok ok
* NO -
IEAPCRET X
HRRKKRD 2R KRR KKK -
*CHANGES NEW PI * .
PSW _TO IEAROUND -
TO HA E *¥Xeoeececesssscncen
*STORAGE‘CLEAREDt
* INTERRUPTION
tttt*ttttt***t***

.

eXessecsececcceccccesccccssccseccsscssscccnssesscsssccsanse

- « NO

IEALOOPS X ok ok
HRKKKED kAR KRR KKK E3 *. E4 *e
*CLEARS 256 BYTEX *

t
UNT RE’ *e NO

* BLOCK OF MAIN * .k «* PROGRAM %,
tSTDRAGL BEYOND *.ecceeeeX¥ke RETURNED X% o INTERRUPTION o%
1PL PRG AND * e TO ZERO <% *o ¥

*COUNTS IN GS * *eo % *o ¥
*#tt*****ttt**#** *o o % e o
* YES * YES
TEAMXLOC X IEARQUND X
ttttF’ ** QKR KRk kK
* * ROUNDS OFF *
* MAX IMUM * t MAIN STORAGE *
* STDRAGC S!ZE * SIZE IN THE *
* * tCOUNT REGISTER *
*
tt*attt*t#:t*tttt t*#x*ntt*t&ttt**t
. .

HRKKKGI kR kk Ak kK

#LOCATES IPL ON * * CHANGES NEw *
* Pl PSw YO *
* RESIDENCE AND * * IEAPCKEY FOR *
READS INTO * PI ON *
: MAIN STDRAGE : * STORAGE KEY %
Rk kR Rk Rk P T e
. .
- .
- .
IEAIPL -
IEASTAR1 X T1EAKYLP X
ok kokH LRk k ok Sk RRHS kR dok ok
* * * *
* CLEARS * * SETS STORAGE *
* GENERAL * * KEY OF MAIN *
* REGISTERS * * STORAGE TO %
* * *SUPERVISOR KEY *
B dokk Rk kR Rk Kk ok
. .
. .
X X
o¥a o¥a
. Sk kdok J2 KRk kR Kk J3 *o Aok Gk kR dokk ok
¥ HAS %o * APPENDS BYTE % ok *o *MACHINE HAS NO *
«* ALTERNATE *. YES *OPERATOR KEYED * «* PROGRAM *. YES *PROTECTION KEYS#
*<NUCLEUS BEEN e¥ecsocsoooxk INTO LOC 8 TO * #e INTERRUPTION e*eceeeeesX*OR ARE ALL SET *
*o CHOS N o% STANDARD ' *o ¥ *TO TOP OF MAIN *
¥ NUCLEUS NAME *o ok * STORAGE *
Txe ox t'ttt*t#x******#* *e ok T P
* NO . * NO .
- . .
. - -
. . .
X X 1EAPCKEY X
1 2 * Fkk KK S kR kR kR Kk
* *CHANGES PI NEW *
*USES ASSEMBLED ‘ SETS NEW PI x * PSW TO GIVE *
EUS t........x* PSW T POINT * * TYPE 9 ERROR *Xesaeacoe ceces
: * TO IEAPCRET * * AND HALTS ON *
* t * * ANY MORE PI *
E e T
X X
Rk Hekkk
* * * *
* B2 * * A5 *
* * * *
kK ok

80

*EkERKAS Kk kR kR KRk kX
* *

* READS SVL AND
* THEN VTOC TO *
*LOCATE NUCLEUS *
* *

Aok kR kR Rk Rk oKk Kk

.

TIEACOMPR

#**ttastti**t**#*
* READS IN AND

* SEARCHES PDS
* DIRECTORY FOR
* NUCLEUS

* MEMBER NAME
tt!tt**tt*t#t**tt

XX

PO

1EARET1
t*cstt*tat*
* READS 13

* TRANSLATION

* TABLE AND

* SCATTER TABLE

* BEHIND IPL

*xt*****tt#tt*at*

R

Xe oo

HRKKKDS KKK K KKK KKK
* BUILDS SIZE. *
* ADDRESS AND %
* RLF TABLES *
* FROM TT/ST *

*

*

* DATA
dokdkok Rk Rk Rk kR Rk

IEAADDRS X
HAKKKES kXK KK KKK KK

* MOVES PART OF *
* IPL NOT YET %
* EXECUTED TO *
* TOP OF MAIN *
* ORAG *
FokdotoRoR oK R R R IOR ROk K

PO

IEARD1
HEREEE SRR KRR KKK
*READS TXT INTO *
* LOWER MAIN *
* STORAGE«NIP %
*ESDID=1 AT TOP *
*
*

dodokok ok Kok Rk Rk Rk kK

MIEEEER

IEARDRC2
HAEKKGS KKK KK KK KKK
* READS TXT *
*CONTROL RECORDS *
#INTO IPL BUFFER
*THEN MOVES RLD *
*DATA BELOW IPL *
kAo KRR KK KK KKK KK

xe oo 00

IEATYPE
FokkkKHS Kk kok kkkkk
* WHEN LAST *
*NUCLEUS RECORD ‘
* READ,UPDATES
*ADDR CONSTANTS *
* BY RLF TABLE *
Fokkkkkkk Rk R kR Rk

IR

A ok JS ok kok ok

* LOADS MACHINE *

* SIZE IN A *

t REGISTER AND *
GIVES UP t

*CDNT OL TO NIP

tttt**tttt*tt**t*

.

POEEERK

HAAKKS ARk Rk
* *
* NIP *
*

FREERE R R R KKk

SEE CHART 20

e Chart 20. Nucleus Initialization Program Control Flow
(Described in Appendix B)
kkk Al kkkkkkokkk
:FROM IPL (CHART;

Adeodeok kot kokok %k kKoK ok
.
.
-
.
.
.
X TIEAANIPO IEUCBO
t****alt****#**** *ERERB2 Rk kkR kR RRK **‘*‘B3‘********* *****BQ********** kR KBS KRk ok kkkokokk
SAVE THE * * * READ STANDARD *
*TCB PROTECTION * STORE END * ALZE * ‘ INITIALIZE * VOLUME LABEL *
* KEYs SET THE *........xt OF NUCLEUS IN t........xt BDUNDARY BOX *oo.ooo.-X*FREE AREA QUEUE*....-..-X* FROM SYSTEM *
*TCB PRDTECTIDN * THE CVT ELEMENT * RESIDENCE *
* KEY TO ZERD * * * VOLUME *
Aok ok ok kR R ko Rk kK *************‘*** ****t******t*'*t* *ttt********t**** ok ok R ROk ok R ok ok ok kX
.
.
-
.
IEAUCBS8 X
Aok Rk C4Rkkokkkkkkk *t***CS*t********
* DETERMINE *
UCB ADDRESS FOR¥
. ¥ THE SYSTEM *Xe oo*VTOC DSCB DATA *
. * RESIDENCE * * *
. * DEVICE * * *
- ok ok e o e ek ok oK oK ko ok ek e ok ok K ok ok ok ok ok ok Kok
-
-
-
.o
M
IEASTRIO .
*t**#Dl#*‘******* *****DZ***#****** *kEXRDI Kk kR Rk KK ER S OEE IS L L L]
* SET NAME * BAL TO A * * * *
0F DATA SET (TG * SUBROUTINE TO * * INITIALIZE * * BUILD AND *
% BE DPENED) IN *eeeceeceeX* READ THE PDS *eeseceeeX*REQUIRED FIELDS*eeseeces Xk INITIALIZE *
* THE CHANNEL * * DIRECTORY OF * * IN THE LOGREC * *SYS1eSVCLIB DEBX*
* PROGRAM * * THE DATA SET % * *
Fhkkk Rk RRR Rk Rk kk ok ok ok kR ok K kok ok kok ok **********tt***** Fdekokokdkodkodokok kokok Rk ok k
.
.
-
.
-
X
IEATIMER o*e
*****E3#****¥**** (33 *eo
#
NO o% MER
*MESSAGE YO THE *X..- *eo ENABLED AND ix
OPERATOR *o WORKING o%
- -
**********#****‘* *o ok
. * YES
- -
. .
- -
. .
. -
SVXINIT X X
*****Fl********** ok kK RF 2%k %k ok kkk *tt**F3****$*t#*t Aok KK 4k ok ok Rk ok ok
* * * OBTAIN * *
*UsE BLDL MACRO * * CONVERT SVC * * TRANSIENT SVC * * SET *
GET DATA *Xeeeeoseek* NUMBER INTO 8 *Xeeeeoeee* NUMBER FROM *Xesseeeee*x TIMER TO 6 *
*EXTENT FOR THE * *BYTE SVC MEMBERX% * RELOCATION * * HOURS *
* svc * * NAME * * TABLE * * *
Aoofokok ok ok dokok koK gokok ok ok ek dok kR dkok ok Rk kkokkk e ook e ok ok ok okok ok ok ok kkkkkkokkkkkkkkkk
- X
- .
. .
- -
X o NO
ke SVXFOUND e¥kae N
Gl *. *****GZ********** G3 *eo Fk KKK G4 A KRRk kKKK *kk kKRGS R kkkkkkkkk
VE e¥ END * * * APPEND *
-* !S SEARCH *. YES *TTR AND LENGTH * ok OF * BUILD AND *
*e BY BL eX¥ OF TRANSIENT *ceece X*%e RELOCATION X% INITIALIZE *eae
SUCCESSFUL- * SVC INTO TTR * X *eo TABLE % * SYS1eLINKLIB *
*e ok * TABLE * - *eo ok * DEB(S * *
*eo o¥ ol ook ok dkokok ok ok ok ok ok ok - %o ok ko ok o o o e ke e ke ok ok ok K ok kkkkkdkokkkkkkkk
* NO - * -
- - .
- - -
- - -
. .
° . - -
X - IEANIP1 X
kR kH Rk kkkkkkk - Kok kKR HG dok ok ok Rk kk *kkkkHS kkkokkkkkkk
* * - * * * *
* SEND A * - * RESTORE * * INITIALIZE *
AMESSAGE TO THE X¥eececcscccccccsccccccccsccacaccsce * THE TCB *Xeooosseoek DYNAMIC AREA %
* OPERATOR * *PROTECTION KEY * *WITH gRB + XCTL*
* * * * * *
Aok ok kRok R ok ok ok ok ok ok kokok ok fokokok Rk ok ek Aok kR okok ok kokok kK
.
.
.
X
ok e
J4 *a *****JS**********
ok *
ok *e NO *SET STORAGE KEY*
*e PROTECTION e*eoe X* FOR EACH 20
*e KEY = % *BYTE (2K) BLUCK*
*oZERD o% * *
*e ok Aok ko okokokokkkkkk
* YES .
- -
. .

eccsccce

Aok K KS kKo ok ok ok ok
: TO DISPATCHER :
*********t*******
SEE CHART 02

Charts 81

APPENDIX A: INITIAL PROGRAM LOADER (IPL)

The Initial Program Loader 1loads the
nucleus and the Nucleus Initialization Pro-
gram into mwain storage. The operator
mounts the system residence volume on a
direct access device and presses the LOAD
key causing the hardware to read the IPL
control record from cylinder 0, track 0 of
the system residence volume into location 0

of main storage. The IPL control record
loads the bootstrap record (a chain of
CCWs) at an address greater than the size

of IPI so that the bootstrap record will
not be overlayed by IPL instructions. The
bootstrap record then loads the IPL control
section text (starting at location 0) and
passes control through an LPSW instruction.
For a more complete description see the
publication IBM System/360 Operating Sys-
tem: Initial Program Loader and Nucleus
Initialization Prcgram, Form Y28-6661.

The IPL program prepares for loading the
nucleus by:

e Clearing main storage and machine
isters,
size.

reg-
and determining main storage

* Setting the storage key of main storage
to the supervisor protection key, in
systens with the protection feature.

e Determining the nucleus to be used.

e Finding the selected nucleus on the

system residence volume.

s Assigning main storage addresses to the
nucleus.

s Relocating the
IPL.

unexecuted portion of

When all prerarations for nucleus load-
ing are made, IPL:

e Loads the nucleus and the Nucleus
Initialization Program.

® Establishes addressability
nucleus control sections Ly
address constants.

amcng the
resolving

When the Initial Program Loader process-
ing is completed, IPL passes control to the
Nucleus Initialization Program.

IPL ORGANIZATION

IPL is made up of twc records and eight
subrcutines:

82

e IPL Contrcl Record -- This 2U4-kyte
record, consisting of an IPL-PSW and
two IPL-CCWs, is loaded into main stor-
age at location zero by the hardware
circuitry when the operator presses the
LOAD key. This record and the IPL
bootstrap record are located at track
zero, cylinder zero of the system resi-
dence device; the IPL subroutines are
contained in one record elsewhere on
the system residence device.

e IPL Bootstrap Record -- This reccrd,
consisting of a chain of CCWs, is
lcaded into main storage at a location
specified by the IPL control record.
The IPL bootstrap record loads the IPL
subroutines into main storage at loca-
tion zero.

e Nucleus Selection (IEACOMPR)
subroutine selects the nucleus
lcaded.

-- This
to be

e Hardware Initialization (IEAMAIN) --
This subroutine clears wmain stcrage,
machine registers and, where applic-

able, initializes the storage keys.

e Nucleus Location (IEACOMLP) -- This
sukroutine 1locates the nucleus on the
systen residence device.

e Control Section Data Organization
(IEAHOOP) -- This subroutine computes
and sequentially arranges nucleus con-
trol section data so the nucleus can be
loaded into main storage.

e IPL. Relocation (IEAADDR) -- This sub-
routine moves the unexecuted part of
IPL to the upper end of main storage to
make room for the nucleus.

e Nucleus Load (IEALOAD) -- This subrou-
tine loads the nucleus and NIP into
main storage.

e RLD Relocation (IEARELCC) —-- This sub-

routine relocates RLD items within the
nucleus text read into main storage.

e Common I/O (IEASTRIO) -- This sukrou-
tine, used by IEACOMLP and IEALCAD,
issues and tests for the successful
completion of START I/0O operatioms.

IPL CONTROL INFORMATION

NIP and the nucleus are comkined into
one load module and written on the system

residence device by the
during system generation. IPL is supplied
with the fixed name of this "nucleus"™ 1load
module, but not with its location or the
location of its DSCB within the VTOC.

linkage editor

The structure of the nucleus load module

on the system residence device 1is the
standard structure described in the publi-
cation 1IBM System/360 Operating System:

Linkage Editor, Program Logic Manual. That
is, 1its records and text are ordered as
follows:

e Composite ESD Record (CESD).

e Scatter/Translation Record.

® Control Record.

e Text Record (TXT).

e Control/RLD Record (here and elsewhere,
RLD data on this type of record depends
on the presence ot RLD items in the
previous text).

e TXT.

e Control/RLD Record.

e TXT.

e and so on, until the end of the 1load

module.

The scatter/translation record is made
up of the translation table and the scatter
table. The translation table corresponds,

entry for entry, to the CESD, where each
entry represents one control section
(CSECT) made up of a2 control (or control/

RLD) record and TXT. Entry O of both the
translation table and the scatter table is

a dummy entry containing zeros. Entry 1,
corresponding to an ESDID of 1, represents
NIP, which 1is the first CSECT of the

The translation table
4-byte

nucleus load module.
contains 2-byte pointers to the
entries in the scatter table.

IPL TABLES

Since the order of nucleus CSECTs on the
system vresidence device is not fixed until
the system is generated, IPL organizes the
information availakle for the CSECTs before
loading the text within CSECTs into main
storage. IPL organizes the data by creat-
ing three takles:

9 SIZTABLE -- a table of CSECT sizes.

e ADRTABLE -- a table of addresses where

the CSECTs are to be loaded.

Appendix A:

e RLFTABLE -- a table of relocation
factors.
These tables are arranged in the same

sequence as the CSECT entries in the scat-
ter table and have U4-kyte entries, making
each table the same length as the scatter
takle.

To make up the SIZTABLE, IPL performs
the following:

e Indexes the scatter table ky the con-
tents of the translation table entry to
determine the address of the scatter
table entry corresponding to a CSECT.

e Toads in a register the assembled ori-
gi "0" of the CSECT from the scatter
table entry.

e Loads in another register the asserkled
origin "01" of thc next CSECT from the
consecutive entry in the scatter tatle.

e Computes the size of the CSECT by
subtracting origin "0" from origin
"01.H

e Stores the size in SIZTABLE in a posi-

tion relative to the CSECT position in
the scatter table.

The size of the CSECT whose linkage-
editor assigned origin is available in the
last U-byte entry of the scatter takle is
computed by subtracting origin "0" from the
size of the nucleus which is availakle in
the PDS directory and stored by IPL in the
first word of the SIZTABLE which IPL builds
behind the scatter table.

To make up the ADRTABLE, IPL perforns
the following:
e Stores the address where the second

CSECT is to be loaded (assumed tc ke
location 0) in the same position in the
ADRTABLE as the CSECT occupies in the
scatter takle.

e Computes the address for the third
CSECT by adding the size of the second

CSECT to the address of the second
CSECT.
e Stores the address for the third CSECT

in the same position in the ADRTABLE as
the CSECT occupies in the scatter
table.

e Repeats the second
above for each ordered CSECT. (Ordered
CSECTs are those which must be 1loaded
first and in the order in which they
arpear in the translation table.)

and third steps

Initial Program Loader (IPL) 83

e Stores the addresses for non-ordered
CSECTs, after computing them as they
are encountered sequentially following
the last of the ordered CSECTs.

The RLFTABLE is similar in structure to
the SIZTABLE and ADRTABLE. Its entries are
computed by subtracting the 1linkage-editor
assigned origin from the address at which
the CSECT is to be loaded.

IPL passes to NIP in registers:

e A pointer to SIZTABLE
e A pointer to ADRTABLE

e The number of entries in each table.

IPL CONTROL FLOW

As shown in Chart 19,
several operator
tions (see the publication
Operating System:
C28-65u40) .

IPL begins with
actions and prior condi-
IBM Systern/360
Operator's Guide, Form
The orerator selects the system
residence device with the LOAD-UNIT
switches and presses the LOAD key. The
hardware circuitry resets the CPU, 1locates
track 0, cylinder 0, and 1loads the IPL
control record into location O. The con-
trol record loads the IPL bootstrap record,
which, in turn, loads IPL and passes con-
trol to the first subroutine via an LPSW
instruction. IPL is executed disabled for
all interruptions except program interrup-
tions.

IPL clears storage and registers, se-
lects the nucleus or allows the operator to
select a non-standard nucleus, sets storage
keys where applicakle, searches the VTOC
and locates the data set containing the
nucleus load module. IPL loads the trans-
lation takle and the scatter table into
main storage, relocates part of IPL (if
necessary), calculates relocation con-
stants, and loads the nucleus load module.
IPL passes control to NIP ky branching to
an LPSW instruction in the nucleus.

NUCLEUS SELECTION

This subroutine (IEACOMPR) selects the
nucleus for loading or allows the operator
to choose a different nucleus, by using the
- ADDRESS—-COMPARE switch and the DATA switch.
The procedure for operator-selection of the
nucleus is given in the publication IRM
System/360 Operating System: Operator's
Guide.

84

HARDWARE INITIALIZATION

This subroutine (IEAMAIN)
parity in the:

sets correct

e General registers.
e Floating point registers, if present.
e Main storage beyond IPL.

In addition, IEAMAIN sets storage keys
to the supervisor protection key.

Program interruptions will occur while
setting storage keys in machines without
the protection feature, or while correcting
parity in machines without floating point
registers or without maximum main storage
capacity. These interruptions are automat-
ically handled by IEAMAIN. Further program
interruptions are unexpected, and this sub-
routine places the machine in a wait state
if they occur.

NUCLEUS LOCATION

This subroutine (IEACOMLP) searches for
the location of the specified nucleus name
on the system residence device and posi-
tions the read head of the system residence
device at the first text record of the
nucleus. IEACOMLP takes the following
steps to locate the nucleus:

device
2 by the

e Picks up the system residence
address stored at location
hardware circuitry.

e Reads the standard volume label to find
the VTOC DSCB address.

e Reads the VTOC DSCB data to determine
the number of tracks per cylinder on
the system residence device.

e Searches the VIOC to find the DSCB for
the partitioned data set (PDS) name.

* Seeks the track where the PDS directory

starts.

e Searches the directory for a record
containing the name of the nucleus,
using the SEARCH EQUAL HIGH KEY

command.
e Reads the PDS directory record.

e Determines the address of the scatter

translation record on the system resi-
dence device from the PDS directory
record.

e Finds the scatter translation record
and reads it into mwain storage akove
IPL.

High Address

r—= 1
B| Y |
el | |
£ Cleared |
cl Storage |
r| | |
el 0 |
’ {
| Relocation Factor Table |
i i |
r a
| Address Table |
b {
| Size Takle |
b -— 4
r -

| Scatter List |
I J
r 1
| Translation Table |
F -—{
I |
| IPL Program |
| |
ot J
Figure 28. Storage Layout Before and After

The nucleus location subroutine uses the
common 1/0 subroutine, IEASTRIO, when read-
ing the standard volume label, VTOC, etc.,
from the system residence device into main
storage. Before using the common I/0 sub-
routine, IEACOMLP sets up a channel program
with an appropriate chain of CCWs to SEEK,
SEARCH, TIC and READ.

CONTROL SECTION DATA ORGANIZATION

This subroutine (IEAHOOP) computes the
address for loading the ordered CSECTs and
also computes the relocation factor and
size of each CSECT. This data is arranged
in tables -- SIZTABLE, ADRTABLE, and
RLFTARLE -- for use by the nucleus 1load
subroutine. The tables and the procedures
IEAHOOP uses to make them are described
under the earlier heading, "IPL Tables."™

IPL RELOCATION

This subroutine (IEAADDR) relocates the
unexecuted portion of IPL and its takles

into the numerically high end of main
storage so that IPL can 1load the nucleus
text starting at location zero. After the

relocation is complete, it moves zeros into
the storage it occupied before relocation
(see Figure 28).

NUCLEUS LCAD

This subroutine (IEALOAD) loads the nu-
cleus into main storage, placing the relo-
catable wrodules into main storage in the
order of their position in the translation

Arpendix A:

High Address

Relocation Factor Table

Address Table

RO Fh

[o e e e s B e Y S . S e St e, Y

Size Table

Scatter List

Translation Table

Relocated
Portion of IPL

—— O

Available
Main Storage

|
0

e e B e e

o

IPL Relocation

table. IEAANIPO, the Nucleus Initializa-
tion Program, must be the first CSECT; it
is 1loaded into the upper end of main
storage just below the relocated porticn of
IPL. IEAATIHO0 wust be the second CSECT and
is loaded into location =zero. IEAATIHOO
includes permanent storage assignments, the
task control block, first level interrup-
tion handlers, the type 1 SVC exit routine,
the dispatcher, the exit effector, and the
input/output supervisor. Unless INSERT
cards are used for each nucleus CSECT
prepared by linkage editor, the order of
the loading of the remaining relocatable
nucleus CSECTS will vary. IPL sets a
buffer of 256 bytes in IPL for reading
control/RLD records, and performs the fol-
lowing actions:

e Reads a control/RLD record into the
buffer and interrogates the record.

e Picks up from the control/RLD record
the ESDID of the text record that
follows the control/RLD record.

e Determines the address, L, at which the
text record of the CSECT is to be read,
by adding the relocation factor from
the RLFTABLE to the assigned origin of
the record.

e Reads the TXT
address L.

record of the CSECT at

e Adds the number of text bytes read, T,
to address, L, to compute the address
where the next text record of the same
CSECT is to be read. Sets L =1L + T.

Initial Program Loader (IPL) 85

¢ Reads into the buffer the control/RLD
record following the text record.

e Builds a table of RLDs by moving RLD

information bytes from the control/RLD
record and keers a count of the RLD
bytes moved into the RLD table akove
NIP.

» Repeats the above steps until all the
records of the nucleus are read into
main storage.

The nucleus load subroutine wuses the
common I/0 subroutine when reading the CCW,
control/RLD and TXT records of the nucleus
load module from the system residence
device into main storage. Before using the
common I/0 subroutine, IEALOAD sets up a
channel program with an appropriate CCW to
READ the particular record.

RLD RELOCATION

This subrcutine (IEARELOC) scans the RLD
takle created by IFALOAD and relocates the
load constants in the nucleus text, using
relocation factors stored by IPL in the
RLFTARLE. At the completion of IEARELOC,
IPL's work is done and control is passed to
NIP. Figure 29 shows the layout of main
storage when IPL passes control to NIP.

COMMON I/0

This subroutine (IEASTRIO), used by nu-
cleus locate and nucleus load, issues and
tests for the successful completion of
START 1/0 cperations. Nucleus locate and
nucleus load set up the CAW and CCWs and
then branch and 1link to IEASTRIO. After
execution of IEASTRIO, control is returned
to the IPL sukroutine that branched to it.

Error conditions encountered during the
execution of IEASTRIO are indicated to the
operator by the WAIT 1light, and the erroxr
type 1is stored in the address field of the
WAIT PSW.

86

The operator can retry IPL when the WAIT
light is on. If IPL is unsuccessful after
a few trials, the operator displays the
address field of the PSW to determine the
error type, and informs the customer
engineer. The ten error types are shown in
Figure 30.

High Address

RLFTABLE

ADRTABLE

SIZTABLE

Scatter List

Translation Table

IPL Program Instructions

NIP Program Text

Available Main Stcrage

O O

Used RLD Informaticn

Loaded Nucleus Text

[e e o e e e et o e e e e S o st et e, A WA o . o S o e, s e, o e e, S oo e, e et
b e e e e e o o — —c——— v c— — ——— . —— — ki a—— . — kit c— i —cden c— ke a—— -

(=]

Figure 29. sStorage Layout at End of IPL

Program Execution

r L] T 1
|Exror |Bit Pattern| Meaning |
|Type | Displayed | |
; + + {
1	00000001	I/O is not operational.
2	00000010	I/O operation is not initiated. CSW is stored. Unit is not busy.
3	00000011	I/O operation is not initiated. CSW is not stored. Channel is
		not busy.
4	00000100	During TEST I/O. Channel is not busy. CSW is not stored.
5	00000101	During TEST I/O. Unit check condition is indicated. Location
		X'4C* contains the address of the ccw causing the original unit
		check, and X'54' contains the first four sense bytes.
I		
6	00000110	During TEST I/O. Any of these conditions are indicated:
		Interface control check.
		Channel control check.
		Channel Data check.
		Channel chaining check.
		Program Check.
17	00010111	During START I/0. Unit check on a sense command is indicated.
	I	
18	00011000	Available space for reading RLD records has been exceeded.
19] 00011001	Unexpected program interruption. IPL damaged.	
I		
FF	11111111	No IPL on this direct-access device.
L L L 4
Figure 30. IPL Error Types

Appendix A:

Initial Program Loader (IPL)

87

APPENDIX B:

NUCLEUS INITIALIZATION PROGRAM (NIP)

The Nucleus Initialization Program (NIP)
consists of several subroutines, each of
which performs an initialization function
required by the resident portion (nucleus)
of the primary control program including:

1. Opening the SVC and Link libraries,

of main
optional

2. Setting the protection key
storage (in systems with the
storage protection feature),

3. Placing the addresses of the upper and
lower boundaries of the dynamic area
into the boundary box.

The NIP sub-routines are packaged in one
non-resident module, processed by the link-
age editor together with the nucleus
modules. NIP is locaded into main storage
immediately kefore the relocated portion of
the IPL program (see Figure 29). NIP is
entered from the IPL program and, on com-—
pletion, passes control to the dispatcher,
after which it may be overlayed by the
processing prograss.

NIP operates partially under its own
stand-alone input/output routine and under
system routines including the I/O supervi-
sor. NIP has its own TCB, RB and boundary
box pre-assembled within NIP code. For
more complete information, see the publica-
tion: Initial Program Loader and Nucleus
Initialization Program.

The NIP module initializes the
ing:

follow-

e Communicaticn Vector Takle (CVT).
e Dynamic Area.

e Boundary BOX.

e Free Area Queue Element.

® SYS1.SVCLIB,
DEB.

SYS1.LINKLIB, SYS1.LOGREC

e SVC Takle Extension (optional).
e Protection Key (optional).

e Timer (ortional).

e Resident BLDL Table (optional).
Method Routines

e Resident Access

(optional).

88

e Resident Type 3 and 4 SVC Routines

(optional).

® Resident Job Queue (optional).

NIP FUNCTIONS

NIP control flow is shown in Chart 20.
When entered from the IPL program, NIP
saves the address of the system residence

device, stored in register 10 by the IPL
rrogram. It rounds the address of the end
of nucleus up to a double-word or 2048 tyte
boundary and stores this value in the CVT
for use by the system environment recorder
(SERO) .

To initialize the dynamic area, NIP
moves a PRB and XCTL code (which have been
pre-assembled within NIP) to the beginning
of the dynamic area. NIP then relocates

the address constants within the PRB and
XCTL code. When this XCTL code receives
control (at the completion of NIP), it
causes control to be passed to the job
scheduler.

NIP determines the addresses of the free
area queue element and 1lower and upper
boundaries for the dynamic area. It stcres
these addresses in the boundary box. It
also stores the number of free bytes in the

dynamic area in the free area queue
element.
NIP builds and initializes DEBs for

SYS1.LINKLIB and SYS1.SVCLIB, and completes
initialization for the SYS1.LCGREC DEB.

NIP optionally extends the SVC table to
contain the TTR and the 1length of each
transient SVC routine.

NIP optionally determines if the timer
is enabled and working. If the timer is
not enabled and working, NIP sends a timer-
status message to the operator. If the
timer is enabled and working, it sets the
timer with a value of six hours.

NIP optionally determines the protection
key for the dynamic area from the "protect
key" field within the TCB. It sets the
storage key of the dynamic area.

NIP optionally makes all or part of the
SYS1.LINKLIB directory resident.

NIP optionally makes resident a group of
access method modules.

NIP optionally makes resident a group of
type 3 and type U4 SVC routines.

NIP optionally obtains
queue records.

space for Jjokt

After completing all initialization pro-
cedures, NIP passes control to the dis-
patcher. The dispatcher then gives control
to the XCTL macro instruction which NIP had
placed in the dynamic area. This causes
the job scheduler to be brought into the
dynamic area and given control.

CVT INITIALIZATION

If the optional BLDL table or RAM and
RSVC routines (explained 1later in this
section) are to be included in the system,
they will be added at the end of the
nucieus. NIP then increases the address at
the end of the nucleus (or at the end of
the optional routines) +to a double-word
boundary in systers without storage protec-
tion. 1In protected systens, NIP increases
this address to a 2048 byte (2K) boundary.
NIP then stores this address (the lowest
address not in the fixed area) in CVT field
CVTNUCB. It is used by the system environ-
ment recorder.

r T 1
0|Bit 7 =| | H
| Hier. | Address of FQE | I
| support| for processor storage | E
e - i R
4 | A
| Address of low boundary | R
| for processor storage | C
k 1 H
8| | Y
| Address of high boundary |
| for processor storage | 0
L J
Boundary Box
r— 1
12] | H
| Address of FCE | I
| for IBM 2361 Core Storage | E
b { R
16| | A
| Address of low boundary | R
| for IBM 2361 Core Storage | C
b—- y =
20| | Y
| Address of high boundary |
| for IBM 2361 Core Storage | 1
L] -

Boundary RBox Extension

e Figure 31. Boundary Box

Appendix B:

DYNAMIC AREA INITIALIZATION

The portion of main storage outside the
fixed area is called the dynamic area. NIP
initializes the dynamic area as follows:

e Pre-assembled code is moved from NIP to
the beginning of the dynamic area.

This code includes a PRB and the XCTL
code that causes 1loading of the job
scheduler through an XCTL macro
instruction.

e The address constants are relocated in
the PRB and XCTL code.

BOUNDARY BOX INITIALIZATION
A three word (12 byte) boundary box
specifies the boundaries of the dynamic
area (see Figure 31). NIP initializes the
boundary box as follows:
Word 1 Address of a free area queue ele-
ment (FQE) describing all free
space in processor storage.
Word 2 Address of the beginning of the
dynamic area. In an unprotected
system, this is the address of the
end of the fixed area rounded up to
a double word boundary. In a
storage protected system, the
address of the end of the fixed
area is rounded up to a 2048 byte
(2K) boundary.
Word 3 Highest address, plus one byte, in
processor storage. This address is
passed to NIP by IPL.

If Main Storage Hierarchy Suprocrt is
included in the system, bit 7 of the first
byte in the boundary box is set to "1", and
the boundary box is expanded to six words
(see Figure 31). If IBM 2361 Core Storage
is not included in the system, the first
three words of the boundary box are ini-
tialized as shown in the preceding tcara-
graph, and the additional three words are
set to zero. If it is included in the
system, then the dynamic area is divided
into two parts. The portion of the dynamic
area within processor storage is known as
hierarchy O0; the IBM 2361 Core Stcrage
portion of the dynamic area is known as
hierarchy 1. The first three words of the
koundary box describe hierarchy 0 and are
initialized as shown in the preceding para-
graph. The additional three words (Words
4, 5, and 6) describe hierarchy 1 and are
initialized as follows:

Word 4 Address of an FQE describing all
IBM 2361 Core Storage space.

Nucleus Initialization Program (NIP) 89

Word 5 Address of the beginning of IBM
2361 Core Storage. This address is
one higher than the last processor

storage address.

Word 6 Highest address, plus one byte, in
IBM 2361 Core Storage. This

address is passed to NIP by IPL.

Figure 32 shows main storage and the
boundary box (for a system including Main
Storage Hierarchy Support and IBM 2361 Core
Storage) after being initialized by NIP.

r 1
| ot t T
| I | |
I I I I
] [|
| | | Dynamic IBM 2361
| (Cptional) | Free Area Core
| | Area (Hierarchy 1) Storage
| I I |
I I | , | |
CF;-E“1 | [| |
ez |1 i i
| 1 T T
	Free		
	Area Dynamic		
— I Area			
B	FCE		* (Hierarchy 0)
e IS			
XCTL code			
b i [
Al PRB	¢		
L 4 I			
T]			
Optional	f		
Routines			
—			
)]	I		
Boundary		Processor	
Bo¥		Storage	
1			
A - I			
b=	Fixed		
1 2]	Area		
b-———{	!		
I I I S			
B e I			
I rci]	
b1			
Frrctl			
b——i			
I I +D			
Lot			
I I			
Nucleus			
		I	
L J - L L

e Figure 32. Dynamic Area and Boundary Box

Initialization

90

FREE AREA QUEUE ELEMENT INITIALIZATION

The free area queue element (FQE) for
processor storage (hierarchy O of the
dynamic area) is a double word following
the PRB and XCTL code in the dynamic area.
NIP initializes this FQE by:

e Calculating the length of the free area
within processor storage and storing
this wvalue in the second word of the
FQE. The free area is defined as the
entire area from the address of the FQE
to the end of processor storage (see
Figure 32).

e Storing zeros in the first word of the
FQE.

The FQE for IBM 2361 Core Storage (hier-
archy 1 of the dynamic area) is a double
word at the beginning of this storage
space. NIP initializes this FQE by:

e Calculating the total 1length of IBM
2361 storage space and storing this
value in the second word of the FQE.

e Storing zeros in the first word of the

FQE.

Figure 33 shows an FQE built by NIP.

0 4 8
r T 1
| Zeros |Length of free area|
| | (in bytes) |
L L]
Figure 33. Free Area Queue Element (FQE)

Built by NIP

SYS1.SVCLIB, SYS1.LINKLIB, AND SYS1.LOGREC
DEB INITIALIZATION

NIP builds DEBs (data extent blocks) for
the SYS1.LINKLIB and SYS1.SVCLIB system
data sets. Main storage for the DEBs is
acquired at the upper end of the nucleus.
The size of the DEBs, and the extent
descriptions, depends on their associated
data set control blocks (DSCBs). As many
as 16 extents may be specified, and
SYS1.LINKLIB may consist of as many as 16
concatenated data sets (listed in member
LNKLSTO00 of SYS1.PARMLIB), with a maximum
of 16 extents each.

The SYS1.LINKLIB and SYS1.SVCLIB DEBs
are built and initialized with information
from the system catalog, the VIOCs (voclume
table of contents), and the DSCBs and DCBs
(data control blocks) for these data sets.
NIP also completes initialization for the
SYS1.LOGREC system data set, with informa-
tion obtained from its DCB and DSCB.

T

To initialize the DEB, NIP obtains the
following data and stores them in the
corresponding DEB fields:

e Start cylinder address and track ad-
dress (CCHH) of the data set.

e End CCHH of the data set.

e Number of tracks occupied by the data
set.

» UCB address for the system residence
device.

e I/0 Appendage Table address.

Figure 34 shows the DEB fields which are
initialized by NIP.

= 1

0] |

| |
L R
- -

| |

I |

| |

| |

|8 4

v T A

28| | DEBAPPAD |

| | I/0 Appendage Takle Address |

pmmmmm- $-- 4

32| | DEBUCBAD |

| | UCB Address |

b-- L -—-1 e

36| | DEBSTRCC |

| |Cylinder Start Addr|

——— 4 {

+

40| DEBSTRHH | DEBENDCC |

| Track Start Addr | Cylinder End Addr |

b t 1

uy| DEBENDHH | DEBNNTRK |

| Track End Addr | Number of Tracks |

L 1 |

Figure 34. DEB Initialization
NIP executes in a stand-alone environ-

ment using its own input/output routine.
To initialize the DEB, NIP:

1. Reads the standard volume 1label tc
determine the volume takle of contents
(VTOC) address on the system residence
device.

2. Reads the data portion of VTOC DSCB to
determine the tracks per cylinder for
the system residence device.

UCB address of the
device through UCB

3. LDetermines the
system residence
takle look up.

Appendix B:

4. Determines the DEB address for
SYS1.LOGREC. The DEB Address is
available within the DCB. The DCB

address for SYS1.LOGREC is available
in CVT field CVTDCB.

5. Searches the VITOC and reads, into a
buffer, the data portion of the DSCB
for the data set.

6. Moves Start CCHH and End CCHH for the
data set from the buffer into the DEB.

7. Computes the number of tracks
tained within the data set extent
stores this value in the DEB.

con-
and
8. Stores the UCB address into the DEB.

9. Moves the I/0 Appendage table address
from CVT field CVTXAPG to the DEB.

Note: NIP also completes initialization of
all fields in the SY¥Si1. LINKLIB and
SYS1.SVCLIB DEBs. See IBM System/360

Operating System:
Form C28-6628,

System Control Blocks,
for further information.

SVC TABLE EXTENSION
INITIALIZATION

(TTR TABLE)

This is an optional NIP function that is
selected during system generation.

The TTR address and length (L) of each
non-resident SVC routine are availakle 1in
the partitioned data set (PDS) directory of
the SVC library.

NIP initializes the TTR takle by:

e Searching the PDS directory of the SVC
library to find the TTR and 1length of
each transient SVC routine.

e Storing TTR and L of each transient SVC
routine in a table within the nucleus.
The assigned area for this takle is
within the SVC handler routine.

The TTR table contains a 4-byte entry
for each transient SVC routine. The format

of each U-byte entry in the table is shown
below:

Bits:

|- 10- | 8 | 11 |-3-1
r T T T -
| | | | |
| TT | R | LENGTH | ESA|
L L 4 —_— L ~d4
< 4 Bytes >

Nucleus Initializaticn Program (NIP) 91

where:
TT = Track address of the transient
SVC routine relative to the start
of the SYS1. SVCLIB data set.
R = Record number on the track.

L = Length in bytes of the transient
SVC routine.

ESA = Extended save area in double
words. This field is pre-
assembled in the table.

NIP uses the following information

available in the SVC handler
initialize the TTR table:

routine to

e Relocation table, containing a 1-byte
index number for each SVC in the SVC
table.

e Highest number assigned to an IBM sup-
plied SVC routine.

e Highest number assigned toc a resident

SVC routine.

To initialize the TTR table, NIP:

1. Constructs an eight byte name for the
transient SVC by using the relocation
table and the highest resident SVC
number, as explained below:

e Picks up the entry in the relocation
table which corresponds to a tran-
sient SVC.

* Translates the entry number in the
relocation takle to a SVC number.

e Converts the SVC number from binary
to decimal.
number to a

e Unpacks the decimal

4-byte number.

e Constructs an 8-byte name for the
SVC routine by placing the 4-byte
unpacked decimal number Leside a
pre-assembled four character prefix
for the SVC names, as follows:

IGCO XXXX

pre-assembled
prefix

unpacked
decimal number

2. Loads the following registers:

e Address of the input parameter 1list
to the BLDL macro instruction is
placed in register 0.

e Address of the SYS1.SVCLIB DCB is
placed in register 1.

92

3. Issues the BLDL macro instruction to
search the SYS1.SVCLIB directory.

4. Tests for the successful execution of
the BLDL macro instruction.

5. On successful comgletion, BLDL returns
the data extent for the SVC routine in
a return area. NIP moves the TTR and
length of the SVC routine from the
return area into the TTR table, in a
format shown in the diagram above.

6. When unsuccessful, BLDL returns an
error code in register 15. NIP tests
the error code and sends one of the
following error messages to the opera-
tor:

"IEA101I SVC ROUTINE IGCOXXXX NOT
AVAILABLE - PERMANENT I/0O ERROR ON SVC
LIBRARY."

"IEA102I SVC ROUTINE IGCOXXXX NOT
AVAILABLE - NOT FOUND ON SVC LIBRARY."

7. Scans the relocation table and rereats
the above rrocedure for each transient
SVC routine.

PROTECTION KEY INITIALIZATION

Main storage protection is an optiocnal
hardware feature. If +this hardware is
included in the Central Processing Unit,
storage protection can be selected during
System Generation. through use of the PRO-
TECT option in the SUPRVSOR macro instruc-
tion. When protection is selected, the
storage keys are set as follows:

e The storage occupied by the nucleus is
set to a key of zero.

e The dynamic area is set to the non-zero
key specified in the “"protect key"
field of the TCB.

TIMER INITIALIZATION

The timer is an optional hardware fea-
ture. It can be enabled or disabled Ly a
switch on the system control panel.

To initialize the timer, NIP:

1. Determines if the timer is working by:

e Setting location 80 to a value of

six hours (X'6309109E).
e Waiting for the timer to decrement.

e Comparing the contents of location
80 with the original six hour value.

If the contents of location 80 are
equal to six hours, NIP sends the
following message to the operator:

"IEA100A TIMER IS NOT WORKING. PUT
TIMER SWITCH ON."
80 to a value of six

2. Resets location

hours.

BUILDING A RESIDENT DIRECTORY FOR
SYS1.LINKLIB

This section is applicable only if the
resident BLDL table option was selected
during system generation.

Fach time an ATTACH, LINK, XCTL, or LOADL
macro instruction is issued, the system
issues a BLDL with a subsequent prograw
fetch of the module. When the resident
BLDL table option is selected during syster
generation, a standard list which includes
all or part of the SYS1.LINKLIB directory
can be made resident in the nucleus by the
nucleus initialization program. Any link-
age to a SYS1.LINKLI3 module causes a scan
of the resident table before a direct
access device search is initiated in the
BLDL routine.

The message:
IEA101A SPECIFY SYSTEM PARAMETERS
is issued to the operator if the CONMM

option was sgecified in the SUPRVSOR system
generation macro instruction. The operator

may then:
1. Specify an alternate list of
SYS1.LINKLIB modules whose directory

entries are to be made resident.

2. Request a listing of the names of the
modules whose directory entries were
made resident.

3. Cancel the option for the current IPL.
If a list is selected, NIP then:

1. Reads the specified list from member
IEABLDxx in SYS1.PARMLIB (where xx=00
or 1is replaced by two alphanumeric
characters supplied by the operator).

2. Places the names in a table which is
filled in by the BLDL routine.

3. Issues a BLDL.

If a normal return is received from the
BLDL routine, the boundary box is adjusted
to include the resident directory table as
a part of the nucleus.

Appendix B:

If an error code is returned from the
BLDL routine, NIP issues cne of the follow-
ing messages:

IEA108I PERMANENT I/O ERROR DURING BLDL

The BLDL function is not performed. NIP
continues to initialize the nucleus.

IEA1091
MODULES

BLDL FAILED FOR FOLLOWING

This message is followed by a list of names
of the modules whose directory entries were
not made resident because they were not
found in SYS1.LINKLIB. NIP adjusts the
koundary box to include the incomplete BLDL
takle and continues as though the takle had
keen completed.

NIP places the address of the BLDL table
into an area in the BLDL routine, IECPFND1.

RESIDENT ACCESS METHOD (RAM) INITIALIZATION

When the RAM option is selected during
system generation, a group of access method
modules are preloaded as part of the nucle-
us by the nucleus initialization program,
thus creating a permanent system load list.
Each time a LOAD is issued for any access
method module, the system 1load 1list is
checked. A program fetch is not performed
if the module is found in the system load
list. Otherwise, the system 1loads the
module in the standard manner.

If the COMM option was specified in the
SUPRVSCOR macro instruction during system
generation, NIP issues the following mes-
sage to the operator:

IEA101A SPECIFY SYSTEM PARAMETERS

The operator may then:

1. Specify an alternate 1list of
method modules to be loaded.

access

2. Request
access
loaded.

a listing of the names of the
method modules that were

3. Cancel the option for the current IPL.
If a list was selected, NIP then:

1. Reads the specified 1list of access
method modules from member IEAIGGxX in
SYS1.PARMLIB.

2. Issues a LOAD macro instruction for
each module in the list. This creates
a load list attached to the TCB. The
list pointer is moved to an area in
the nucleus which is reserved for the
system load list rointer.

Nucleus Initialization Program (NIP) 93

If NIP is unable to 1load an access
method module, it issues the following
nmessage:

IEA110I LOAD FAILED FOR (module name)

NIP continues to initialize the nucle-
us even though the named access method
module was not loaded as part of the
RAM option.

3. The boundary box is adjusted tc
include the system 1load 1list and
access method modules as part of the
nucleus.

RESIDENT TYPE 3 AND 4 SVC ROUTINE
INITIALIZATION

When the resident type 3 and 4 SVC
routine option is selected during system
generation, a standard list of type 3 and 4
SVC routines may be loaded as part of the
nucleus by NIP. If the COMM option was
specified in the SUPRVSOR macro instruction
during system generation, NIP issues the
following message to the operator:

IEA101A SPECIFY SYSTEM PARAMETERS
The operator may then:

1. Specify an alternate list of type 3
and 4 SVC routines to be loaded.

2. Request a listing of the names of the
routines that were loaded.

3. Cancel the option for the current IPL.
If a list was selected, NIP then:

1. Reads the specified list of SVC rou-
tines from member IEARSVxx in
SYSl1.PARMLIB.

2. 1Issues a LOAD macro instruction for
each module in the list. This creates
a load 1list attached to the TCB. If
the module is a type 3 routine or the
first module of a type 4 routine, its
entry point is placed in the SVC table
as discussed in the section entitled
"Resident Typre 3 and U SVC Routine
Cption." After all loading has been
completed, the 1load 1list contains
entries for routines requested by type
4 SVC routines via XCTL macro instruc-
tions. Following these entries,
regardless of the order in which the
routines were actually 1loaded, are
entries for the first loads of type 3
or 4 SVC routines. The 1list pointer

9y

is moved to an area in the nucleus
which is reserved for the RSVC system
load 1list pointer. If NIP is unable
to load an SVC routine, it issues the
following message:

IEA1101I LOAD FAILED FOR (module name)

NIP continues to initialize the nucle-
us even though the named routine was
not loaded as part of the resident
type 3 and 4 SVC routine option.

If a requested SVC routine is not
supported at the installation, NIP
issues the following message:

IFA114I SVC (xxx) NOT SUPPORTED
The named SVC routine is defined but

cannot be loaded because it 1is not
supported at the installation.

If a requested SVC routine is unde-
fined, NIP issues the follcowing
message:

IEA115I SVC (xxx) NOT DEFINED
Indicating that mno such SVC routine
exists.

3. The boundary box is adjusted to
include the RSVC 1load 1list and SVC
routines as part of the nucleus.

RESIDENT JOB QUEUE INITIALIZATION

When the resident job queue option is
selected during system generation, NIP
obtains the area needed to hold a specified
number of job queue records. If the COMM
option was specified in the SUPRVSOR macro
instruction during system generation, the
number of resident job queue records speci-
fied during system generation may be over-
ridden when the nucleus is initialized. 1In
this case, NIP issues the following message
to the operator:

IEA101A SPECIFY SYSTEM PARAMETERS

The operator may then vary the number of
job queue records for the current IPL.
After the operator responds, NIP obtains an
area whose size is based on the number of
records to be made resident. The area
becomes part of the nucleus. A pointer to
the area is saved in a portion if the
nucleus that was reserved for this rurrose
when the resident Jjobk queue option was
selected.

APPENDIX C: RESIDENT SUPERVISOR MODULES

T T
| Sysgen Output|

(Job Management)

1Variakle module names, dependent on macrc instruction's use.

[1 |
	Macro to be	Microfiche	
	Checked for	Module	Routine Name
Csect Name	Module Name	Name	(cr Other Specified Function; e.g., Table)
N 1 i1 1 1			
v T T T 1			
IEAAIROO0	IEAAIH	1	First Level Interruption Handlers (FLIHs)
	IEAAPS	1	Dispatcher and Exit Effector
	IECIOS	1	I/0 Supervisor
8 1 + 4 4			
r T T T 1			
IGCO009	-	IERADLOO	Delete
b + + t {			
IGCco12	-—-	IEAASYO00	Synch
L 1+] 4 1			
r T T T N 1			
IGCOo10	-—-	IEAAMS00	Getmain
t t t + 1			
IEAOPLOO	-	IEAAPLOO	Prolog
b ¢ t — :			
IGCo11	-	IEAORT10	Timer SVC
F + t t _ :			
IEERA1	-—	IEECIRO1	Console Interruption (Job Management)
t t t +			
IEAOABOO	-—-	IEAAABOO	Abterm
b + t t {			
1Gco01	IEAAWT	1	Wait
i + + + - 1			
IHASVCOO	SGIEA2SV	1	svC Takle
IR 4 4 } 4			
r T T T 1			
IEAATAOO0	IEAATA	1	SVC Second Level Interruption Handler (SLIH)
			Exit and Transient Area Handler
1 1 1 } J			
r T T T 1			
IEACVT	CVT	1	Commrunications Vector Takble
% { t ¢ 1			
I6C002	IEAA®T] 1	Post	
b $--—- ¢ $--- 1			
IGC006	IEAATC	1	Link, Load, XCTL
			Transient Area
% fomm + t {			
IEATCBOO	IEATCB	1	Control Blocks
N 4 4 4 ,			
r T] 1 a			
IEWFTMIN	-—=	IEWFTMIN	Program Fetch
[N 4 i 1 _-_.|
r . T T L]

| IEWFTPCI | - | IEWFTPCI | Program Controlled Interrupt Fetch |
IR + R + 4
r T T T A
| IEFJOB | - | IEFKRESA | Job Scheduler Tables and Work Area |
| | | | |
lr 1 1 4 _Jl
! |

—_—

(continued)

Appendix C: Resident Supervisor Modules 95

(continued)

T T

|Sysgen Output|

|Macro to be |Microfiche
| Checked for | Module
Module Name Name

Routine Name
(or Other Specified Function; e.g., Table)

— e, e s

Csect Name

T 1

| |

| I

| |

| | | |

F ¢ t t {
| IFBDCEBOO | -—= | IFBDCBOO | System Environment Recorder (SER) Data Contrcl |
| | | | Block |
k + + + 1
| IGCco1s | -—- | IECPFIND | Find (Data Management) |
L 1 4 1 J
v T T T A
| IGC037 | - | IEWSVOVR | Overlay Supervisor |
L } 4+ 4]
v T T T 1
| IEEBC1PE | - | IEEBC1PE | External Interruption (Job Management) |
N 3 4 4 Jd
13 T T T 1
| IEC2311A | - | IEC2311A | Disk Error Routine (I/0 Supervisor) |
b 4] 4 4
r T T T]
| IEFDPOST | -—- | IEFDPOST | Unsclicited Interruption (Job Management) |
— ¥ ¥ t 1
| IEEMSLT | SGIEE001 | 1 | Master Scheduler Resident Control Data Area |
| | | | (Jok Management) |
k t + + ; 1
| IECZDTAB | SGIECODT | 1 | Direct Access Device Table (I/O Supervisor) |
b= + 1 + 1
| IECINTRP | -—- | IECINTRP | Sense and Status Interpreter (I/0 Supervisor) |
L 4 4 1 J
r T - T T 1
| IEAANIPO | TIEAANIP | 1 | Nucleus Initialization Program |
l,____ L L L _jl
|tVariable module names, dependent on macro instruction's use. |
L -4

96

APPENDIX D: PROGRAM FETCH RECORD FORMATS

CONTRCL RECORD - (LOAD MODULE)

~N o

rr
|0]1-3
||
L_L

<
o —

b oo e s

¥ 1 L]
[
[Record length is 20 bytes
i 4 L

|
|
| t——Length of control section

| the control section (in bytes) that the text in
|

|

L

the follcwing record belongs to (2 bytes)

CESD_entry number - specifies the composite
external symbol dictionary entry that
contains the control section name of the
control section that this text is part
of (2 bytes)

——Channel Command Word (CCW) - that could be used to read the text
record that follows. The data address field contains
the linkage editor assigned address of the first byte
of text in the text record that follows. (8 bytes)

[o e s e . e e e i . . G . G . S e

—-Count - contains two bytes of binary zeros. The count field contains the
length of the record.

P o e o
[o o e e e s e . e e . . e i S . S, S o, Tt e v e

-—-Count - in bytes of the control information (CESD ID, length of
control section) following the CCW field (2 bytes)

[o e o e — e — i, . B . S — s, T — — — — . — o

--Spare - contains three bytes of binary zeros

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
!
|
L

—-Identification - specifies that this is: (1 byte)

e A control record - 0000 0001

e The control record that precedes the last text record of this overlay
segment - 0000 0101

s The control record that precedes the last text record of the module -
0000 1101

Arprendix D: Program Fetch Record Formats 97

RELOCATION DICTIONARY RECORD - (LOAD MODULE)

—-Position pointer - contains the entry number of the CESD entry (or trans-
lation table entry) that indicates which control section
the address constant is in (2 bytes)

T T T 7))
10]1-3|4,|6,}8-15 |16-255 Record length can be |
(] 15 17 | | between 24 and 256 bytes |
L1 L L__1 e |
N I N | !
I (R I I |
I R R B L--RLD data -- see Lelow
1 I I
| 1 | | --Spare - contains 8 bytes of binary zeros
[N
|| | t——Count - in bytes of the relocation dictionary information following
| 1 | the spare 8 byte field (2 bytes)
[
| 1 L——Count - contains two bytes of binary zeros
1
| t--Spare - contains three bytes of binary zeros
|
L——Identification - specifies that this is: (1 byte)
e A relocation dictionary record - 0000 0010
e The last record of the segment - 0000 0110
e The last record of the module - 0000 1110
RLD Data -- see above
v 1T 1 T 1 T T 777 T 17T 7177 1
1 1 1 | Il R | O |
IR |P |F| & |F| A | |[F| A |[R [P |F| A |R |P |F| A |
| I IS T X L1 1] L1 L1 _1_ L Lo L___L_ L J
I I
[| L--Address - linkage editor assigned
|| | address of the address
1 | | ' constant (3 bytes)
I |
11 L-—Flag - specifies miscellaneous information as follows: (1 byte)
| | when byte format is xxxxXLLST:
1 1 xxxx specifies the type of this RLD item (address ccnstant)
| | 0000 -- non-branch type in assembler language,a DC A(name)
|| 0001 -- branch type (in assembler language, a DC V(name)
(. 0010 -- pseudo register displacement value
|| 0011 -- pseudo register cumulative displacement value
[1000 and 1001 -- this address constant is not to be relocated,
(. because it refers to an unresolved symbol.
(. LL specifies the length of the address constant
|| 01 -- two byte
|| 10 -— three byte
| | 11 -- four byte
11 S specifies the direction of relocation
1 | 0 -- positive
| 1 1 -- negative
11 T specifies the type of RLD item following this one
[0 -- the following RLD item has a different relocation
| | and/or positicn pointer
1 | 1 -- the following RLD item has the same relocation and
| | position pointers as this one, and therefore is omitted
|
.
|
|
|

L—-Relocation pointer - contains the entry number of the CESD entry (or transla-
tion takle entry) that indicates which symbol's value
is to be used in the computation of the
address constant's value (2 bytes)

98

CONTROL_AND RELOCATION DICTIONARY RECORD - (ILOAD MODULE)

—-CESD entry number
(2 bytes)

~T T~T°°7 T°T7°7T°7 T7T 1 ~T T
|0]1-3|4,]6,|8-15 I I P | I B
L1517 | I I I | [I B B
I I N I I N T A I [I R A
L1 L__1__1 oL _L1_1 L1 J | I 1 _1__1
I I
| I I I
| | t—Address | t--Length of control
| | | section (2 bytes)
| L—-Fla |
| L
|
|
L

|
|
|
|
|
|
|
| t--Address (3 bytes)
|

L

——Flag (1 kyte)

L——Position pointer (2 bytes)

|
|
|
|
|
|
|
|
|
|
|
|
|
|
L

—Relocation pointer (2 bytes)

[e e e e e e e s e s e, e, e e, S

——Channel Command Word (8 Lytes)

--Count of RLD information (2 Lytes)

--Count of control information (2 bytes) - the control information contains the
ID and length of control sections in the following text record.

|
|
|
|
|
|
|
|
!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
L

—-Spare (3 bytes)

—--Identification (1 byte) - specifies that this record is:

e A control and RLD record - 0000 0011

e A control and RLD record that is followed by the
last text record of a segment - 0000 0111

e A control and RLD record that is followed by the
last text record of a module - 0000 1111
Note: For detailed descriptions of the data fields see:

Relocation Dictionary Record
Control Record

The record length will vary from 20 to 260 bytes.

Appendix D: Program Fetch Record Formats 99

PARTITIONED ORGANIZATION DIRECTORY RECORD - (AS RECEIVED FROM BLDL)

8

40|section name) for |ESDID (CESD entry number of control
|first text record. |section name) containing entry point.
L L

Byte

r 1
of _ |
| Name of load module (wember or alias name) |
4| |
I T 1
8] Relative (to beginning of data set) disk address of | Concatenation |
| module (TTR) | number |
- T T + 1
12| Byte of binary |Alias indicator and| Relative (to beginning of data set) |
| zeros. 1 |miscellaneous info.|disk address of first text record. |
[N 4 - 1 d
1)) T 1
16 | continuation of | Byte of binary |Relative (to beginning of data set) |
|disk address | zeros |disk address of NOTE List or Scatter- |
4+ 4 4
- T T 1
20| translation record|Number of entries | Module attributes (see next page) |
| |in NOTE List 2 |0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 |
L L '} J
v T 1
24| Total contiguous quantity of main storage required by the|Length(in bytes) of]
| module |first text record. |
L 1 4
r T 1
28| continuation of |Module's linkage editor assigned entry point address |
| Length. | |
t L T :

32|Linkage editor assigned origin of first text record. |

| |

L J
r 1
|Length of scatter |
For load modules in scatter format add: | |
1 d
r L T 1
36|List (in bytes) |Length of translaticn table (in bytes) |ESDID (CESD entry |
| | |number of control |
L + 4+ J

T T

I

|

1

r 1
For load mcdules with RENT or REUS attribute and Alias |Entry point address|
names add: | |
—_ 4 4
r T a
36| of the member name. | |
I I I
¥ 1 I
40| Member nare |
| r 1
4s | |
L- 1
r -
| SSI Bytes - Aligned on a half-wcrd boundary at the end of the PDS |
| record. I
L 4
Alias indicator and miscellaneous Informaticn:
1. Alias indicator -- 0 signifies none,1l signifies alias -- bit 0
2. Numker of relative disk addresses (TTR)in user data field -- bits 1,2
3. Length of user data field (in halfwords) -- bits 3-7
PDS Directory Record size (for SSI, add U4 bytes to sizes):
Block format 36 bytes Scatter format 44 bytes
Block format with alias names 46 bytes Scatter format with alias names 54 bytes

1 This is normally a zero byte inserted to maintain half-word boundaries. If the
DCB orerand in the BLDL macro instruction was specified as zero, this
byte will contain a 1 if the nane was found in the link library, and
a 2 if the name was found in the job library.

2 This byte contains zero if load module is not in overlay structure.

100

MODULE ATTRIBUTES

(see bytes 22 and 23 on the preceding page.)

Indication

Bit Number Attribute Bit setting
0 RENT 0
1
1 REUS 0
1
2 OVLY 0
1
3 TEST 0
1
L LOAD 0
L. 1
5 Format 0
1
6 Executable 0
1
7 Format 0
1
8 Compatibility 0
1
9 Format 0
1
10 Format 0
1
11 Format 0
1
12 Editability 0
1
13 Format 0
1
14 Eu4l4 Linkage Editor O
1
15 Refreshable 0
1

Not reenterable

Reenterable

Not reusable

Reusable

Not an overlay module

Overlay module

Not under test

Under test

Not only loadable

Only loadable 2

Block format

Scatter format

Not executable

Executable

Module contains more than one text
record and/or RLD record(s).
Module contains only one text
record and no RLD record.

Module can be processed by all
levels of linkage editor.

Module cannot be reprocessed by
linkage editor-E.

Linkage editor assigned origin of
first text record is not zero.
Linkage editor assigned origin of
first text record is zero.
Linkage editor assigned entry
point is not zero.

Linkage editor assigned entry point
is zero.

Module contains RLD record(s)
Module does not contain an RLD record.
Module can be reprocessed by
linkage editor.

Module cannot be reprocessed by
linkage editor.

Module does not contain TESTRAN
symbol records.

Module contains TESTRAN symbol
records.

module not created by E&44

Linkage Editor

module created by E44

Linkage Editor

not refreshable

refreshable

1 Module can only be loaded with the LOAD macro instruction. When the module is
in main storage it will be entered directly, and not through the use of an

XCTL,

LINK, or ATTACH macro instruction.

Arpendix D: Program Fetch Record Formats

101

APPENDIX E:

ENQ/DEQ QUEUE CONTROL BLOCK (QCB) FORMATS

MAJOR QUEUE CONTROL BLOCK (MAJOR QOCB)

The beginning of the major QCB queue is addressed by CVT field IEARAQCBO. The
format of a major QCB is:

o

r T 1
] |]
| 0 | Address cf next major QCB |
‘| i i
| 0 | Address of previous major QCB |
8} ¢ {
[|) _ |
| 0 | Address of first minor QCB |
12¢ 1 i
| I
l , [
16| Major name |
I |
I |
20L]

Address of

next major OCB - the address of the next QCB on the major QCB queue.

If this is the last QCB on the queue, this field is zero.

Address of the previous major QCB - the address of the previous major QCB on the

major QCB gqueue. If this is the first QCB on the queue, this field is the
address of CVT field IEAAQCBO.

Address of the first minor ¢CB - the address of the first minor QCB for this major

QCB.

Major name - the 8-byte major resource name.

102

MINOR QUEUE CONTROL BLOCK (MINOR QCB)

The format of a minor QCB is:

0

1 i i
| 0 | Address of UCB |
4t { i
| | _ _ |
| 0 | Address of previous minor QCB |
8} + .
| | _ |
| 0 | Address of next minor QCB |
12} t T i
| Minor name |QCB protection| |
| length | key | |
16} L ! Minor name |
L L
T H

Address of UCB - the address of the UCB rerresenting the direct access device on

which the named resource resides.

Address _of the previous minor OCB - the address of the previous minor QCB. If
this is the first minor QCB on the queue, this field contains the address of
the major QCB.

Address of the next minor OCB - the address of the next minor QCB on the queue.
If this is the last minor QCB, this field is zero.

Minor name length - the length in bytes of the minor resource name.

OCB protection key - the protection key of the job step (if applicakle).

Minor name - a variable length (1 to 255 bytes) minor name.

Appendix E: ENC/DEQ Queue Control Block (QCB) Formats

103

APPENDIX F: ENTRY AND SEGMENT TABLE FORMATS

ENTRY TABLE (ENTAB)

r T 1 T L]
|Unconditional branch to last |Address of symbol referred to|"to"seg|Previous Caller |
| entry BC 15,DISP(15,0) | | number |(zero initially) |
L 1 i 4]
v T] T 1
|Unconditional branch to last |Address of symbol referred to|"to"seg|Previous Caller |
| entry BC 15,DISP(15,0) | |number | (zero initially) |
L L 4 L J
| | | | |
| | | | I
| | | | |
r T T L . 1
|Unconditional branch to last |Address of symbol referred to|"to"seg|Previous Caller |
| entry-BC 15,DISP(15,0) | |number | (zero initially) |
[N L 4 1 ']
r T T 1 T A
| SVC u45 |L 15,4(0,15) Loads GR15 with | BCR 15,15 |"from"™ |Address of segment |
| |the value of the ADCON. | |seg.no.| takle (SEGTAB) |
L i 1 L 1 4
|<---2 bytes-->|<--2 bytes--->|<--2 bytes--->|<---2 bytes-->|<1lbyte>|<-----3 bytes----- >|
DISP -- is the displacement, in bytes, of this entry from the last entry.

"to" segment number -- is the number of the segment containing the symbol being

referred to.

"from" segment number -- is the number of the segment that contains this entry.

104

SEGMENT TABLE (SEGTAB)

r L] T 1
| TEST| |Address of Data Control Block (DCB) used to load module 1
|ind. | | |
L L 4 |
3 T . a
| | Address of note list 1
| I |
L 1 4
r T, T T .]
|Last segment |Highest segment no.|Last segment | Highest segment no. |
|number of region 1 |in storage-region 1|number of region 2 |in storage-region 2 |
- $ 4 + |
|Last segment |Highest segment no. |Last segment |Highest segment no. |
|number of region 3 |in storage-region 3|number of region 4 |in storage-region 4 |
L 4 L 4 d
r T a
| Zero | (Not used in the Fixed-Task Supervisor) 1
| | |
t ' {
| (Not used in the Fixed-Task Sugervisor) 1
| |
L 4
v . T T 1
|Previous segment 1| zZero | status|
|number for segmentl| |indctr|
L o 1 1 4

r T
|Previous segment |Address of entry table

|number for segment2|chain exists)
L 1

v 1
1 |status]|
|indctr|
4 J

entry (when caller

- .

r T
|Previous segment |Address of entry takle

T 1
entry (when caller 1 |status|

| number for segmentN|chain exists) |indctr|

L 1 1 J

S — 4 bytes >|

TEST indicator -- specifies that this wrodule is "under test"™ using TESTRAN.
(Bit 1) Initialized by program fetch.

Highest segment no. in storage -- is initially set to 00 except for region 1 which
is initially set to 01 ky linkage editor.

Status indicator -- indicates the status of this segment with the two last Lbits of

the entry table address field as follows:

00 -- segment is in main storage as a
10 -- segment is in main storage, no c
01 -- segment is not in main storage,
11 -- segment is not in main storage.

The status indicator for segment 1 is
initially set to 11.

1 Set to zero by linkage editor.

App

result of a branch to the segment.
aller chain exists.
kut is scheduled to be loaded.

initially set to 10, all the rest are

endix F: Entry and Segment Table Formats

105

APPENDIX G: SERO AND SER1 RECORD ENTRY FORMATS

SERO and SER1 produce two types of record entries corresponding to the two types of
errors processed: machine-check and channel errors. Record size varies with the type of
record and with the machine model. The formats of the record entries produced by SERO
and SER1 are:

Machine Check Record Entry Format Channel Error Record Entry Format
r T T T T 1 r T T T T 1
| SYS | MOD |R.E.| | | SYS | MOD |R.E.| |
| R.E. LABEL | ID | NO. |TYPE| FLAGS | | R.E. LABEL | ID | NO. |TYPE| FLAGS |
L 4L 1 L L 4 L L 4 i i 4
r T a1 r T 1
| I | | | I
| DATE | TIME | { DATE | TIME |
I I | | I I
L L J L g]
| 1o I
| PROGRAM IDENTITY | | PROGRAM IDENTITY |
| I | |
i Lo |
| MACHINE CHECK OLD PSW | | FIRST CCW OF FAILING CHAIN |
| I | ‘ I
t it :
| | | |
| ACTIVE I/0 UNITS | | FAILING CCW |
i o |
| r 1t 1
| | CHANNEL TYPE | | |
i | ASSIGNMENTS | | CSW |
% - L {1 I
1

| |k - !
GENERAL PURPOSE		
REGISTER CONTENTS		ACTIVE 1/0 UNITS
k - i	r 4	
FLOATING POINT I		ASSIGNMENTS
REGISTER CONTENTS	t T + Y	
		CHANNEL
t - 4	and UNIT	FLAGS
I	ADDRESS	
GENERAL PURPOSE REGISTER PARITIES	F 1 4	
		!
3 T 4	HARDWARE LOGOUT	
	I	
FPR PARITIES	CPU	b- i
	HARDWARE LOGOUT	
b - i		MODEL BYTES
[40 0		
MODEL BYTES	i 50 48	
		65,75 24
40 256	I	
] 50 16l . - 3	r 1	
65 176	I I	

| 75 152 I I |

L y | L 4

106

=N

The fields in the record
interpreted as follows:

entry are

Record Entry Label - 3 bytes
Identifies the record as output from
SER. It is set to SER in EBCDIC.

System Identifier - 1 byte
Identifies the version of SER which
created the record.

0 = SERO, 1 = SER1

Model Number - 1 byte
Identifies the System/360 model on
which the record was created.

Record Entry Type - 1 byte
Identifies the +type of error that
caused the record to be created.

machine check
channel error

C
I

o

Flags - 2 bytes

Byte O

Bit O Spare bit

Bit 1 0 Record entry is complete
Record entry is not
complete

L]
[

1
o

Bit 2 Channel and unit address

matches a system UCB

= 1 Channel and unit address
does not match any system

UCB

Bit 3

1]
o

The operating system could
not continue after the
error

= 1 The operating system could
continue after the error

1]
o

Bit 4 The scheduler was not in

control when the machine

check occurred.

= 1 The scheduler was in con-
trol when the machine check

occurred.
Byte 1
Bit 0 0 Proaram data was obtained
Program data could not be
obtained because the area
from which it would have
been extracted was over-
layed. (Applies only to
SERO.)

{1l
o0y

Other bits - unused

Appendix G:

Date - 4 bytes
Identifies the year and day in packed
decimal as follows:

00 XX XXX F
Unused Year Day Zone
Time - 4 bytes
Identifies the time of day when the
record entry was created.
XX XX XX X X

Hour Minute Second Tenths Hundredths

If the model does not have an interval
timer, this field is zero.

Program Identity - 8 bytes
Identifies the program in process or
the program requesting service when
the error occurred.

Machine Check 0ld PSW - 8 bytes
The field is taken directly from loca-
tions 48-55.

Active I/0 Units - 20 kytes
Identifies by channel and unit address
a maximum of ten devices that were
busy when the error occurred.

Channel Type Assignments - U4 bkytes
Identifies the channel configuration
of the system as follows:

BYTE O BYTE 1
r T T T T >
|CHAN O|CHAN 1|CHAN 2|CHAN 3|ETC.
L L L L L >
Bit 0 = 0 Channel not present

= 1 Channel present
Bit 1 = 0 Multiplexor channel

= 1 Selector channel
Bit 2 = 0 Low speed

= 1 High speed
Bit 3 = 0 Not a storage channel

= 1 Storage channel

General Purpose Register Contents - 64

bytes
Identifies the contents of the GPRs at
the time the error occurred. For the
Model 50, only bits 0-27 and the
parity bits are stored for each
register. For Mcdels 65 and 75, GPRs

errors and
keing

are tested for parity
corrected if necessary before
stored in this field.

SFRO and SER1 Record Entry Formats 107

Floating Point Register Contents - 32 bytes
Identifies the contents of all FPRs at
the time the error occurred. The
field is zero for Models 30 and 40 not
equipped with the floating point
feature.

General Purpose Register Parities - 8 bytes
For Model 40, this field is zero
because hardware corrects parity dur-
ing part of the machine check inter-
rupt cycle, making parity indications
unavailable. For Model 50, the field
contains the last four bits of each
register with the exception of regis-
ters 13, 14, and 15. (Applies only to
SER0.) For Models 65 and 75, the
field identifies the GPRs that con-
tained parity errors when the error
occurred. Only the first two bytes of
the field are used. They are inter-
preted as follows:

Byte 0 Byte 1

00000100 00100000

Register 0 Register 15

Registers 5 and 10 had parity errors.

Note: If this information is stored
by +the SERO program for the model 75,
no parity errors will be indicated for
registers 13, 14, and 15 because SERO
cannot determine the parity in these
registers.

108

Floating Point Register Parities - 4 bytes
Identifies the FPRs that contained
parity errors when the error occurred.
The contents of the field differs
according to model and is interpreted
in the same manner as the GPR parity
field. The field is zero for a Model
40 record.

CPU Hardware Logout - 152 to 256 bytes
Represents all or part of the contents
of locations Hex 80 through Hex 17F.

First CCW of Failing Chain - 8 bytes
Identifies the first CCW of a chain of

CCWs being executed when an error
occurred.

Failiing CCW - 8 bytes
Identifies the specific CCW being

executed when an error occurred.

CSW - 8 bytes
Identifies the CSW that was stored
when an I/0 error occurred.

Channel and Unit Address - 2 bytes
Identifies the device being serviced
at the time of the channel failure.

Flags - 2 bytes
Not used.

I1/0 Hardware Logout - 0 to 48 bytes
Identifies the status of the failing
channel when an I/0 error interrupt
occurred.

RECORD_FORMATS

This section shows

APPENDIX H: CHECKPOINT/RESTART RECORD FORMATS AND MODULE LIST

the format of the records included in a CHECKPOINT entry. These
records are created and written by the CHECKPOINT service routine (SVC 63).

CHECKPOINT HEADER RECORD (CHR)

20

28

36

ay

52

r T 1
| Number of | CHECKID |
hex | CHRPTs | Length |
T L ' 1
| |
! L |
| CHECKID (left justified) |
] (Checkpoint Entry Identification) |
| |
| |
14 | 1
| DDNAME cf CHECKPOINT Data Set |
] |
ic } T {
| Lower Toundary of Problem] Upper Boundary of Problem |
| Program Storage | Program Storage |
24 } T ¥ {
| CHKPT | TIOT | CHECKPOINT Work Area Size |
| Blocksize | Length | |
2¢ } L t {
| CHECKPOINT Work Area | CHECKPOINT SVRB Address (
| Address | |
3t : 1
| Lower Boundary of IBM 2361 | Upper Boundary of IBM 2361 |
| Core Storage | Core Storage |
| 1 3
Note: The CHR is 400 bytes long and is padded with ones.
CORE IMAGE RECORD (CIR)

‘ 4§ .
| |
| Problem Program Core |
| |
L ,g% 1

|

|

. |

Direct copy of rroklem program storage,
from the highest to the lowest address.
Blocksize 1. 1Is specified by the caller, or
2. If not specified, is the
maximum for the device tyge.

Appendix H: CHECKPOINT/RESTART Record Formats and Module List 109

DATA SET DESCRIPTOR RECORDS

Type 1 DSDR
0 2 78 86 190
r T %%’ T T 1
| | | | |
|X*0000"| JFCB | DDNAME | UCBTYP |
L . 1 1 |
T DR T T
| | |
! | l |
Type 1 DSDR Job File DDNAME of the Unit Control Block
Identifier Control Block CHECKPOINT Data Set Type Field
(2 Lkytes) (176 bytes) (8 bytes) (4 bytes)
Type 2 DSDR
0 2 78
r T 4())L 1
	.
X*o0004"	JFCB Extension
L T L ____S% ____________ 1	
I	
I	
Type 2 DSDR Job File Control	
Identifier Block Extension	
(2 bkytes) (176 bytes)	
Type 3 LSDR	
0 2 78	
. e ‘.	
X*0008"	GDG BCT
l I	
s 4 '	
_	
o	
Type 3 DSDR Generation Data Group	
Identifier Bias Count Takle	
(2 bytes) (176 bytes)	
Special Identifiers	
0 2 0 2	
r————=== 1 . ——————- 1	
Indicates that the	
]X'0010"	--previous LSDR is the
	1last one.
IS | [1

110

SUPERVISOR RECORD (SUR)

48 49 52

A

___S&____

First 48 bytes of the user's Task Control Block

TR
!
4]
>
——

R

L (

52

7T

Reserved ——————-1

e o o e e e

Bddress of the first user save area

56 60 61 6 96 100 104

= e e oy

DCB | FQE |FP
[

___-T____L_---T____L

[e o e e . e e S

T T T

Floating Point Registers SYNAD Return

Area
T

o ——-

0
T
|
|
|
L

T———
- —— —

L
T)T

i

| L—— Zero or Address of the first
| FQE for IBM 2361 Core Storage
I

L

|

l . . : .

| - X'01' Floating pcint registers exist

| X'02' Floating pcint registers do not exist
I
L

——— Address of the first FQE for processor storage

R o e o ——— — ——]

CHKPT DCB SYNAD ————————————

|
|
|
|
|
|
|
|
———————— Address of the CHKPT DCB |
1

Address of the return area for CHECKID —-

£ C

= e o e oy D

=))

CHECKID Offset Tape SYSOUT Information

o e e o}
e

T——

A

RRE

 —e o]

—— Displacement from the beginning of the SVC
transient area to the next sequential instruction
for the end-of-volume (EOV) routine, IGG0551A

o e e st e s s e o

—— Checkpoint entry identification name

BRppendix H: CHECKPOINT/RESTART Record Formats and Module List 111

CHECKPOINT/RESTART SVC MODULE LIST

The takle below shows the entry point nawme, functional name, object module name, and
CSECT name for each of the CHECKPOINT and RESTART transient SVC routines.

Load modules use a work area in problem program storage to communicate with each
other. The address of this work area is passed in register 1. The modules are listed in
the order executed.

Object Module Name Control Section Name
and and
Microfiche Name Name of Routine Entry Point Name
IHJACPOO CHECKPOINT ROUTINE--HOUSEKEEPING 1 IGCO0006C
IHJACPO1 CHECKPOINT ROUTINE--HOUSEKEEPING 2 IGC0106C
IHJACPO2 CHECKPOINT ROUTINE--HOUSEKEEPING 3 IGC0206C
IHJACP10 CHECKI/O IGC0506C
IHJACP20 PRESERVE 1 IGCOAOQ6C
IHJACP25 PRESERVE 2 IGCOoCcO06C
IHJACP30 CHECKMAIN IGCOF06C
IHJACP4O RESUME I/O IGCONO6C
IHJACP50 CHECKPOINT EXIT ROUTINE IGC0Q06C
IHJACP70 CHECKPOINT MESSAGE RCUTINE IGCO0S06C
TIHJARSO0O0 RESTART HOUSEKEEPING 1 IGC0005B
IHJARSO1 RESTART HOUSEKEEPING 2 IGC0105B
IHJARS20 REPMAIN IGCO0505B
IHJARSU4O0 JFCB PROCESSOR 1 IGCOGO5B
IHJARSU41 JFCB PROCESSCR 2 IGCOIOSB
IHJARSL3 MOUNT/VERIFY NON-DIRECT ACCESS IGCOKO5B
THJARSUS MOUNT/VERIFY DIRECT ACCESS IGCOMO5B
IHJARSHC ‘SYSIN/SYSOUT NON-DIRECT ACCESS PROCESSOR IGCOLO5SB
IHJARSUD SYSIN/SYSOUT DIRECT ACCESS POSITIONING 1 IGCONOSB
IHJARSUE SYSIN/SYSOUT DIRECT ACCESS POSITIONING 2 IGC0QO5B
IHJARSYT NON-DIRECT ACCESS POSITIONING IGCOPOSE
THJARSU9 DIRECT ACCESS POSITICNING IGCORO5B
JHJARSLRB FINAL PROCESSING MODULE IGCOTO5B
IHJARS60 RESTART EXIT ROUTINE . IGCOVO5R

112

® CHECKPOINT/RESTART REGISTER USAGE TABLE

output from Module

L]
|
1

Internal Use

Input to Module

Modules

N
[T T T R T T = MM MoM O OM M M M XM M X X
[T < LT R <] B oM M X B3
m H M [B = B M ®m &b B M]
] By
B M KB H Hq B8 B [[[
]]
2 =2 &2 =2 =2 &2 =5 =2 =
N
[=] Q
) ¢}
m m

IHJACPOO
IHJACPO1
IHJACPO2
IHJACP10
TIHJACP20
IHJACP25
IHJACP30
IHJACPUL4O
IHJACPS50
IHJACPT70
IHJARSOO
IHJARSO1
IHJARS20
IHJARS40
IHJARSU1
TIHJARSU43
IHJARSUS5
IHJARSUC
IHJARSUD
IHJARSUE
IHJARSULT
IBJARSU49
IHJARSUB
IHJARS60

R1 contains all zeros
21f an error in Module IHJACPOO,

1If CHKPT CANCEL,

addresses CHECKPOINT'S

and RS

R1 contains all zeros

SVRB
3If CHKPT CANCEL,

R15 contains return code

G - address of CHKPT work area
H - address of CHKPT's SVRB

J - return code

A - parameter list address

B - CVT address
C - TCB address
D - SVRB address
E - base register

K - address of RESTART WORK AREA

L - address of data set entry in work area
M - address of data set entry in work table

F - address of CHKPT work area

Appendix H: CHECKPOINT/RESTART Record Formats and Module List 113

INDEX

Where more than one page reference is
given, the first page number indicates the
major reference.

ABDUMP.cacescseaccccsscassnsccacasesssae 30,25
ABENDu.:cescecscsassccsenseassseeseas 25,29,30
BBTERM. e eeeeceooecaccancncnaccsaaannes 25,29
Active request block
QUEUE. cceeececcsensoaesas 34-36,21,22,14,12
BAPPENAdag€ecccecccsccccccsncscsccsccsasss I1
Area
environment recording (ERA)..c.eeee.. 55
extended save (ESA) ccececcecasaeasces 92,18
fixed or systeMecceeceeeecceceese. 89,31,11
fre€.ceeeeeeeeccecacceacaseas 30,31,89,90
I/0 supervisor transient.......... 16,11
processing program
(dynamic)ee.... 92,21,31-36,88-90,11,14
program interruption
control (PICA) eeeeccanccscasnasnes 23,26
SVC transient....eeceess. 11,16,22,91,92
Asynchronous Exit
Asynchronous Exit Queu€..ccceeeee. 21,22
Asynchronous Exit Routine......... 19-21
(See Exit Effector)
ATTACH: ceeeecesseaseacsessses 101,12,36,25,26
BLDL.cecoccssscaccaacsancsacansses 92,93,36
Block
queue control (QCB)....... 102,103,28,29
request (RB).eeeeeeeo.. 20,34,26,12,88-96
interruption (IRB)..e.ocees. 21-23,12
loaded (LRB) ceeecececsccccnncoeeaes 13
loaded program (LPRB).......... 13,14
MiNOTeeeeeeneeanacaneoaas 29,34,36,103
program (PRB)...<...... 88-90,36,34,12
supervisor (SVRB)..... 12,19,35
system interruption
(SIRB) ceeseeececneeasaas 12,21,34,30
task control
(TCB) ceeecccacacsna
Boundary bOX..eeeeeecececacsascanea

seeooe

25-30,23,19-21,12-14
31,88,89

Central Processing Unit (CPU).. 11,12,15,25
Channel Error Record
(See System Environment
Reccrding)
CHECKID . eeeesooaaancencnanennaaasss 109,111
Checkpoint
core image record (CIR)..eeeeccecoeeas 59
data set descriptor record
(DSDR) ¢veececscncccnceancansssss 57,90,91
header record (CHR) ceeeecececeaeeas 57,90
supervisor reccrd (SUR)...eeeee... 57,92
CHRPT e eeeeecccacsaosasccscnascsnsacsss 5660
CIRB ROULINE.cececesacoccecasscsccsscsas 21
(See Exit Effector)
Communication vector table
(CVT) e ieeececcacaacacncsoaaasacncese
contents SUPErViSiON.cecscecocceaceas
Control block (see Block)

88-90,28
14,34-36

114

Core image record (CIR)..ceeeccececcccess 57

CPUtcececoccccnanasacnsacacanasees 11,15,25

Data management.cccecececesecesss 15,34,36,30

DELETE.ccccecccacssscscccccascscccaneses 34,36

DEQecececececacccncacsccscnancncanncees 25,29

DispatCher.ecececeeecececscaceeceaass 16,21,51
(see Exit Effector)

Dump, storage
ABDUMP.cccccaccoccscccsascscncssesas 25,30
indicativVe.ceececeecccoccccccccccncseass 30

Dynamic Area (See Processing

Program Area)

Element
free area queue (FQE)....ce.... 32,88-90
interruption queue (IQE)eceeeeecs.. 20-22
program interruption (PIE)..... 20,26,23
timer qUeU€..cceecceccacccceaseass 50,51
End of task
abnormal...cccecececcccccccccsccccss 29,30
NOYMAl:eeeeacccacasaceacacsaeass 29,30,25
ENQueeeesocacccscananccancnsecenss 25,28,29
Entry procedures, SVCeeceeceeceaceecses 18,19
Entry table (ENTAB) ceceecececcacceass U3-U48
Environment recording ar€ad..c.ceccecececs. 52
Exit
ASYNCNYONOUS.ccecececccacscasscaes 19-22
SVCeeeeosocenoonaassass 16,19-21,50,35,36
type 1eeeeeeee.. 16,19,20,31,26,50,35,36
Exit effectOoriceeeececeaneaceeees. 21,51,36
Extended save area (ESA)eceeaccececssas 18,92
EXTRACT ccceeccoscocsascsscsncsassnaccncass 26,25

Fetch, program (see Program
Fetch)
FINCHeeeoeoacoooesasesecscsnnscscacsecoes 3U4-36
FixXxed AQr€accccececsceccscsccecsssssss 11,31,81
NUClEUS.eccecaancacancosaseaasass 11,88,89
transient ar€deececceccecscccesssess 11,88
FLIH (First Level Interruption
Handler)
I/0ceecencsscscacsacscnsscssnses 16,22,23
MC (machine check).eceeeao... 24,17,52-54
P (Program)ececececcececescecasss 17,23,24
SVCeceeeecencncsnnnecensssass 16,18,19,50
T/E (timer/external)........ 16,23,50,51
Free QY€Qeeeeosscascccsccsssseass 31,32,89,90
free area queUC..ceeceeseeceaess 32,88-90
free area queue element
(FOE) ceevecacnoancncasanacseas 32,88-90
FREEMAIN.cccceecscaccsososssacssassassses 33,31

GETMAIN. . cccececcccccaccaccnsasssnesas 33,31

Hierarchy
(See Main Storage Hierarchy
Support)

IBM 2361 StOrag€.ieececececcceacecesseas 11,31
IDENTIFYeeeeeeeacecoacccacccacesnceaas 3U-36
Initial program loader (IPL)......... 82-87

Chart.ccceecececcecaascscscancsaccacsss 80
ComMON I/Ceceecccccsncsasncansansas 86,87
control Section Data
Organization....ccceeeececceacacsaas 85
Hardware initjalization........... 82,84
IPL Bootstrap ReCOrd.cceceecceccaceccasss 82
IPL Control R€COYd..sececsccccacsassces 82
IPL relocatiONeseseccscacccccasnnsaes 85
IPI TableS.ceeeecassscsccoccacnsasesas 83
Nucleus loa@deccccecccceccsccccassss 85,86
Nucleus selectiONecccececcccccsasass 82,80
RLD relocatiON.ececcecescecccccscacsceseas 86
Initialization
boundary bOX.eeeceeeeeeeceeesss 31,89,88
communication vector table
(CVT) ceeeeecacecaconsncccacencasns 88,89
data extent block (DEB)cccecccccscscss 90
dynamic area (see Area)........... 88,89
hardWare€..cececececeececeacsscscccaasss 82,84
main StOrage.ceececeascsceccscccasscaes 88,89
NUCLlEUS.cceecenccscccncaseaeasas 88,89,81
protection k€y..ceeeeeeecececaaees 92,88
resident access method
(RAM) ceceeoecccsccacsancnanacanss 93,94
resident job queue.....ccccececcenc.. 94
SVC routines
resident type 3 and 4.ccecececec.. 94
SVC table extension.cececececsaceass 91,92
LIl eeeeeeeesceccconcssscaccsccnsnass 92
Input/output interruptions........ 16,22,23
Input/output supervisor........ 16,21-23,42
transient ar€a..cccececcecccssa.. 11,16,22
Interrupt Key.eeeeeeeeeoreeeeeecencncanas 23
Interruption handling (see
FLIH;SLIH) ceccecocecceccscsncsnsssscsancecss 16
Interruption Queue Element
(IGE) (see Element).cecececcsscaaaas 20-22
Interruption request block
(IRB) cceecesccnccncsanseassccsanseas 12,20-22
Interruption supervision....... 14-16,18,63

Job management....cececec.... 12,15,30,51,11

Key
interrupt..cecececcececccccccaccasaas 23
LOAD....... ceaccccea B - 4
Protection.ccecceccecssccscccccscannaass 92
StOXageeeeeceeecececccccccocccccncoane 92

Library, SY¥S1.
LINKLIBeceeeeoaasoaoaonnaneaoasa 90,91,88
PARAMLIB. e eeecenn. ceceeeacaaan 90,93,94
SVCLIBeececceaacacacaesnossss 90,91,88,35

LINKe ceveeocececcaccncacsesesss 35,11,12,101

List
2 2 |
loaded programeccececececcaseass 13,34-36
NOLEuuuueeeennnnns feeeeecaeaaan 38-u42,ul4

LOADe ceeeecsccesecanseccensass 34-37,13,82-8L

Loaded program list.....cccceee... 13,34-36

Loaded program request block

(LPRB) e eveececcennnseaccnscnceansaness 13,104

Loaded request £lock (IRB)eceeceeeceesss 13

Loader
initial program (IPL) (see

Initial Program Loader)....... 82-87,80

LoaAingeeeeceececcecescaccccccnacesass UHO-U42

Local Time Pseudo Clock (LTPC)e.caecee... U9

Machine-cheCK.ceceeeccaacnaeeas 2U4,17,52-54
interruption (see FLIH)..... 24,17,52-54
YECOYAeeeeaosossocsacsasnsccncaansses 53,106

Main storage supervision.... 11,30,31,14,68

Main StOrag€..ceceeececececcacsceacesccacnsss 11
DYNamicC AY€A.eeeececcocccacceccsess 14,31
Fixed Ar€@.ecceesccecsccscosacscscccesscss 11
IBM 2361 StOrag€e.eeeceseeceeesess 11,12,31
Processor Storageeieceeceeseceesceccccsceess 12

Main Storage Hierarchy

SUPPOTt.cecossassssasseasss 30,31,14,68,11

Management
dat@seececescsccacsccscsacsssass 11,15,30
JObeeeaeeoeaaecnsceansass 12,15,30,51,11
taSKeeeeeeosecnccsscssnncssccsassce 11,15

Note 1iSt ceoeecceccecccccaacacaces 38-U42, 44

NUCleUS.:ceeeesccoscasaasasss 11,82-86,88,89

Nucleus initialization......... 88,89,82,83

Nucleus Initialization Program

(NIP) (see

Initialization)....... 88-94,81-86,11,12
BLDL Tabl€.cccececececcanceccaaasas 88,93
Boundary BOXeeceeeseecceesecsess 88,89,39,31
Communication Vector Table

(CVT) ceceeccacocncsccacannssansaacsss 88,89
DynamicC Ar€@..eeccceseess.-.. 88,89,14,631
Extended SVC Tabl€.ceeceacaeseaas 18,88,91
Free Area Queue Element

(FOE) ceeecccccsccsncasscnsacconcascse
Protection Ke€Y.ceeaeceoeooacannnses
Resident Access Method

(RAM) ccvececaccccncccaccaaanass 88,93,35
Resident SVC Routines

(RSVC) ceececescsccncccccnnncannass 88,90
Resident JOb QUEUE.ceeeesececceass 88,94
SVCLIB, LINKLIB, and LOGREC....... 88,90
Tillereeecsceacoacscscassasccansanccanss 88,92

88,90
88,92

Overlay sUpervisioN...cccceececse.. 43-48,72
initializatiONeescececccccoccccasess U7,U8
(see also Entry and Segment

tablesS)eeeeieceeeeeencacacccaancnnss U3
NOte LiStecececesacsccccaaasaass 38-U2,44
Overlay ModuleS..e.eeececccacecacaeaas 39
Overlay Supervision Modules.......... 41
SEGLDceececoccccscaccscoccncencaccscceas U3
SEGWT ¢ e cceevcecoccscacescscccssanncncss U3
segrent 1loadingeeccececcscccascasccsass U8
terminatioNe.cceececsescccecaaaansasaas U8
(see also Program Fetch)

Partition (see Area,
processing program)
PCI FetCheeeooeeeeecncenoaaaaeaas 37,40,42,71
PICAceeeeeceacacncccsncocsacoccsascsncncscses 26
(See Program Interruption
Control Area)
PIE
(See Program Interruption
Element) cceeeeeeeeececacaacnccnecncss 23
POSTeeeeesccosocncoasscccccsasscnsnsss 27,25
Processing program area (see
AY€a)eeeeeeeeooees cecccccanan ceecaca ... 11
Processor StOYag€eeeeeceoeecneccasases 12,31
Program FetCheeeeeeeneeeeeaaenaaas. 37-42,70
Control ReCOYAeeceececeaacscsccacaaas 37,82
Control and RLD Record...... 99,83,85,86

Index 115

End-of-Extent appendag€...cecceccecscecss U42
Input/0utput ErrOrSeceecececececccccess 42
Partitioned Organization
Directory ReCOrd...ceececececececeasss 100
Program Fetch Records.cccececececcaces 97
RLD RECOXAeececesescsccacnscccsceaecs 86,98,82
Text ReCOYXdeeeeecseccecccsceeases 83,85,86
Program FLIH..ceeececoeccccoccessss 17,23,24
Program InterruptioNe.ccececcececeess 23,24
Program Interruption
Element (PIE)ceccececececceess 25,26,23
Program Interruption
CONtrOl AXE€Q.cccecccccccccccccscese 23
Program Interruption
ROUtiNEeceeceecccacsancccccnasanas 23,24
Program request block (PRB)

(see BloCK) eeeeecoascccesas 12,34,88-90,26
PROLOG (see FLIH, P)leccececcscoccaeas 24,17
Pseudo CloCK.eeeeeeeeececcaceeccanass U49-51
Pseudo disableccccccceccaccccccacsccacas 16

Queue
active request block..... 12,13,34,35,22
asynchronous exit queue
(BEC) ceeeccccccscscanacnsscnsscaanaas 22
free ar€a@cceccccccccscccccecces 88-90,32
tiMeYioeeeceeeeesacaaansocsaseaseess 50,51
Queue control block (QCB) (see
BloCK) cceeececeacaccancnseess 102,103,28,29

Relocation table...ceeceeees. 17,85,86,91,92
Request block queue
(see Active request block
queue; Loaded program
list)
Request block (RB) (see Block). 12,20,26,34
Request element (interruption
queue element) ceeeceecccecscccncsss 20-22,90
RESERVE. .cceeeccoceacsscscnsccceasnsassas 28,25
Resident access method (RAM)... 93,94,88,35
Resident job queue (see Queue). 94,95,89,88
Resident type 3 and 4 SVC
routines (see SVC Routines)
Restart (see Checkpoint)..eeeeeeace.. 56-58

SEGLDececceccsascascccasasacsccescaasas 43,47
Segment takle (SEGTAR)....... 43-48,104,105
SEGWTI ¢ eeecaceaccecssacacasacscsassacnas 43,47
SER (see System
environment recording)
SET COMMANG: cescccccccassssosscsccnsas 4I=51
Shared direct access device
(shared DASD) cececeeacanssccasseasssaass 25,30
Six Hour Pseudo Clock (SHPC)...eeecasee. U9
SLIH
SVCeeaoacecacsananaass 16,18,19,26,35,36
LiMereceeaeesecscsacoscacscnssseanaass U9-51
SPIE (see Program Interruption
Element PIE) ceveececcasasassscccans

STAE. ceeeacccccosscscscsasasnascosne

26,25,24
30,26,25
STAE Control Block (SCB)eeeeececeacees 26
STIMEReceesecccoesccccsascaceccccssasas 49=51
SUDPOOl . eeeeeeececocecencccsssacnnseass 31
Supervision
contentS..eceeeeceeacosceaaaas 14,35,36,34
interruption....cecececeeac.. 14-16,18,63
J/0¢eeeeeacecsasocncasccansasoansacss 11,12
main storag€..ccccececceeas-sa. 30,31,14,68

116

overlayeecececececeeess 43-48,14,37,38,72
taSKeeeeeeeeeacecacecesaceee 25,31,11,64
tiMEeeceecasececcsacescsacsss U49-51,14,73
Supervisor Modules (resident)........ 94-96
SVC FLIHeceeeecccccccssascsccscncccccnsces 16
SVC InterruptionS.ceccecececcccsccaceccccees 18
SVC Entry ProcedureSceccececccccceaccees 18
SVC Exiting Procedur€ececececcececccecess 19
Supervisor record (SUR)ecceeess... 111,57,59
Supervisor request block
(SVRB) (see BloCk)eeceececeeeaes 12,19,34-36
SVC ROUtiNESeeececcacccacsascesscsss 16,18,19
Resident Type 3 and 4 SVC
ROULiINEScececcccccecccccocscsccnsee IU4,22
Supervisor Call Routines....... 16,18,19
Type 1 SVC ROUtinES.ccceccccccceccass 16
Type 2 SVC ROUtineS..cecccececcccccccecs 16
Type 3 SVC Routines .c.ccececccccccess 16
Type 4 SVC ROUtin€S..ccececscccacesss 16
SVC SLIH.eeeecoecoocecccasecccccscscceces 16,19
SVC Table.iececeeeccecaceccncccaacsnses 17,18
Extended SVC Tabl€.eeceeccoccececcecess 18
SVC transient ar€d@eceecececeee.. 11,16,22,91,92
SVRBeceoesoosscsccsceccsnasccncccccsascccncs 19
SVRB Creation §

Initialization Subroutine...ceececee... 19
SYNCHeeeeoosososooscecsaaccacscsecsccescece 34,36
SyStem are@.ccceccescsceccecceaseses 11,31,89
System environment recording

(SER) cececsccccccccecacsccccasnesenes 52-55
System interruption request

block (SIRB) (see Block)...... 12,21,30,34
SYS1.LINKLIBececaceocseaoaccoeeaaes 90,93,88
SYS1.LOGREC.eececacccccacccaceeasss 90,88,55
SYS1.PARMLIBecococooasccccccncnsoas 90,93,94
SYS1.SVCLIBeccececacncacacaennes 90,92,88,35

Takle
communication vector (CVT)..... 88-91,28
entYy (ENTAB)eeeceoeoescceocesess U43-48,104
relocatioOn.eccececececceceeess 17,92,86,87
segment (SEGTAB) cceecceccceeess U43-48,105
SVCeeeeeeencascesncsncsacsnccaasanses 17-19
extensiONeeececcecssascsess 18,91,92,88
Task control
block(s)eeeieeeeeos 11-14,19-22,23,25-30,88
Task management.c.ceccecccccccceccncsacass 11
Task supervisiONeeececececeee... 25,31,11,64
Task TerminatioNeececcecececcceccccsansnees 21
abnormal.ecececccceccccsccccccaseaases 30,21
NOXMAleececccacscssascasncscsssssss 30,21
(see ABTERM, ABEND)
TESTRAN. cccccaccccsacsascsscessas 43,848,101
TIME:cecacecsasaosacscscasoassasscnsaee 5254
Time sUpervisioN..ccececececeess.. 52-54,14,73
T/E FLIH ¢eececcceccscscencceanss 16,23,50,51
T/E (timer/external)
interruptionS..ccececeecceceees 23,16,52-54
TiMEr.eeeoeeesasacaccassscscsccscsnscnasanss U9
TiMer QUEUEC..ccecccacccccassossccscess 50
Timer Queue Element (TQE).ccceeeceeces 50
Timer SLIH.cccosceescacscccsssccacscsscs 5l
Transient Ar€Aeeeecececessccccceccscscscsseass 11
I/0 Transient Ar€Qeececseccccsccessscess 11
SVC Transient Ar€@..ecescccecscsccssscsss 11
Transient Area Refresh
ROUtINE.cececcsacsscsasccccssaanss 20,21
TTIMEReecceescceasscsecssascsnnancsasasss U49,51

Twenty-four Hour Pseudo Clock WAIT . ceeeeeacccacccacacncenacnnansnass 24,25

(TUPC) ceaecaaan ceccccccscsssscancsss 49,50 WAIT
Type 1 EXitieeeeeeieeeaeeecaaneeees 16,19,27 Multiple EVeNtececeeececececccacccacascs 26
Single Event.ceeeecececacccccconsccacs 27

Validity check (see Check)...eeeeco.. 17,29 XCTLeeeeeoeeassancessassanss 30,31,34,35,101

Index 117

GY28-6612-4

EN

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM World Trade Corporation

821 United Nations Plaza, New York, New York 10017
[International]

PC199-8TAD VST UL pauLg

READER'S COMMENT FORM
IBM System/360 Operating System; Fixed-Task Supervisor
Program Number 360S-CI-505

GY28-66124

Please check or f£ill in the items below, adding explanations and other comments
in the space provided.

Which of the following terms best describes your job?

X Programmer X Systems Analyst X Customer Engineer

X Manager I Engineer X Systems Engineer

X Operator X Mathematician I Sales Representative
X Instructor X Student/Trainee X Other (explain)

Does your installation subscribe to the SRL Revision Service? X Yes X No

How did you use this publication?

As an introduction

As a reference manual

As a text (student)

As a text (instructor)

For another purpose (explain)

)= = =G =g = ¢

Did you find the material easy to read and understand? X Yes X No (explain below)

Did you find the material organized for convenient use? X Yes X No (explain below)

Specific criticisms (explain below)

Clarifications on pages

Additions on pages

Deletions on pages

Errors on pages

Explanations and other comments:

Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

GY28-6612-4

YOUR COMMENTS PLEASE . . .

This manual is one of a series which serves as reference sources
for systems analysts, programmers and operators of IBM sys-
tems. Your answers to the questions on the back of this form,
together with your comments, will help us produce better publi-
cations for your use. Each reply will be carefully reviewed by
the persons responsible for writing and publishing this material.
All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assis-

tance in utilizing your IBM system should be directed to your IBM
representative or to the IBM sales office serving your locality.

FIRST CLASS
PERMIT NO. 116
KINGSTON, N. Y.

BUSINESS REPLY MAIL
]

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.
]
L]
POSTAGE WILL BE PAID BY —

IB O
M CORPORATION —
NEIGHBORHOOD ROAD P
KINGSTON, N. Y. 12401 —
I
)]
ATTN: PROGRAMMING PUBLICATIONS —
L]
 DEPARTMENT 637 —
L]
“Folo TTT T Lo

JISIM

®

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

