
IBM System/3S0 Operating System

Fixed-Task Supervisor

Program Number 360S-CI-505

File No. S360-36
GY28-66124

Program Logic

This publication describes the internal logic of the
Primary Control Program (PCP) Supervisor. The PCP
Supervisor is one part of the IBM System/360 Operating
System control program. It performs task management as
follows:

• Interruption Supervision

• Task Supervision

. • Main Storage Supervision

• Contents Supervision

• Program Fetch

• Overlay Supervision

• Time Supervision

• System Environment Recording

• Checkpoint/Restart

It is intended for persons involved in program
maintenance, or system programmers who are altering the
program design; it is not needed for normal use or
operation of the program described.

Fifth Edition (November 1968)

This edition corresponds to Release 17 of the Operat­
ing System. It is a major revision of, and obsoletes,
Y28-6612-3 and Technical Newsletter Y27-7172.

The following chapters should be reviewed completely:

Chapter 3 - Main Storage Hierarchy Support for IBM
2361 Models 1 and 2 has been added,

Chapter 8 - The chapter has been rewritten and
includes SER improvements,

Chapter 9 and Appendix G - New pages describing
Checkpoint/Restart

Other changes to the text are indicated by a vertical
line to the left of the change; changed or added
illustrations are denoted by the symbol (0) to the
left of the caption. These changes include:

• Multivolume, Multiextent Link Library

• Blocked PROCLIB/PARMLIB

• STAE

• ENQ, DEQ, and Validity Check Routine Charts

Significant changes or additions to the specifications
contained in this pUblication are continually being
made. When using this publication in connection with
the operation of IBM equipment, check the latest SRL
Newsletter for revisions or contact the local IBM
branch office.

This pUblication was prepared for production using an IBM comp~ter to
update the text and to control the page and line format. Page 1mpres­
sions for photo-offset printing were obtained from an IBM 1403 Printer
using a special print train.

Copies of this and other IBM publications can be obtained through IBM
branch offices.

A form for reader's comments appears at the back of this publication.
Address any additional comments concerning the contents of this publica­
tion to IBM Corporation, Programming Publications, Department 637,
Neighborhood Road, Kingston, New York 12401

_ e Copyright International Business Machines Corporation 1968

This manual describes the internal logic
of the primary Control Program (PCP) Super­
visor which is part of the IBM System/360
Operating System control program. The PCP
Supervisor performs task management in op­
erating systems using the Primary Control
Program. The external characteristics of
this supervisor are described in the IBM
Systems Reference Library.

Information in this document is directed
to the customer engineer who maintains and
services the IBM System/360 Computing Sys­
tem and who is responsible for field main­
tenance and updating of the IB~ System/360
Operating System. This information may
also be used by the programming systems
maintenance programmer and the development
programmer who will expand the system.

This publication may be used to locate
those areas of the system to be analyzed or
modified. The information is presented to
enable the reader to quickly relate the
task management functions to the program
listings for those functions. The comments
in the listings provide information for
thorough analySiS and understanding of the
functions.

PREFACE

PREREQUISITE PUBLICATIONS

Knowledge of the information
following publications is required
full understanding of this manual.

in the
for a

IBM System/360 principles of Operaticn,
Form A22-6821

IBM System/360 Operating System: Con­
cepts and Facilities, Form C28-6535

IBM System/360 Operating System: Intro­
duction to Control Program Logic,
Program Logic Manual, Form Y28-6605

IBM System/360 Operating System: Super­
visor and Data Management Services,
Form C28-6646

IBM System/360 Operating System: Super­
visor and Data Management Macro
Instructions, Form C28-6647

The following publications are not
required but may be useful for reference.

IBM System/360 operating System: TES­
TRAN, Form C28-6648

IBM-SYStem/360 Operating System: Link­
age Editor, Form C28-6538

IBM System/360 Operating System: System
Programmer's Guide, Form C28-6550

IBM System/360 Operating System: System
Generation, Form C28-6554

IBM System/360 Operating System: Ini­
tial Program Loader and Nucleus
Initialization Program, Form
Y28-6661.

3

INTRODUCTION
Main Storage Areas • • • •

Dynamic Area Usage • • • • • •
Task Control Block (TCB) ••••
Request Block (RB) ••••

Request Block Queueing • • • •
Active Request Block Queue • • • • •
Loaded Program List • • • • •

Fixed-Task supervisor components
Interruption supervision
Task Supervision • • • •
Main Storage Supervision
Contents Supervision • • • •
Program Fetch • • • • • •
Overlay Supervision • • • • • • • • •
Time Supervision • • • • • • • • • • • •
System Environment Recording
CheckpointlRestart • • • •

Fixed-Task Supervisor Control Flow

CijAPTER 1: INTERRUPTION SUPERVISION •
Interruption SUpervision Routines • •
SVC control Information • • •• • • •

Relocation Table • • • • • • • • • • •
SVC Table • • • • • • • • • • •

Extended SVC Table (Optional)
Interruption Supervision Control Flow

SVC Interruptions • • • • • • • • •
SVC Entry Procedures ••••
SVC Exiting Procedures
Dispatcher •• • • • • •
Resident Type 3 and 4 SVC Routine Option

Input/Output Interruptions
Timer/External Interruptions
Program Interruptions • • • • •
Machine Check Interruptions •

CHAPTER 2: TASK SUPERVISION •
Task supervision Routines •

Task Modification • • • •
Task Termination •• • •

Task supervision Control Flow •
ATTACH • • • • •
EXTRACT •
SPIE
STAB
WAIT
WAIT
POST

Single Event
Multiple Event

ENQ • • •
DEQ ••
ABTERM
ABEND • • •

Normal End
Abnormal End
Shared Direct Access Device ABEND •

CHAPTER 3: MAIN STORAGE SUPERVISION.
Main Storage Supervision Routines • •
t-jain Storage Supervision Control Flow

Boundary Box
Free Area Queue • • • • • • • • • •

CONTENTS

• 11
• 11

· • • 11
• 12

12
• 13
• 14
• 14

• • • 14
• 14

• • • 14
14

• 14
• 14
· 14

• • • 14
• 14

15
• 15

• 16
• 16
• 17
• 17

• ••••• 17
18

• 18
• 18
• 18
• 19
• 21
• 22
· 22

• • • • • • • • • 23
• 23
• 24

• • 25
• • • • • 25

• • • • • • • 25
• 25

• • • 25
• 25

• • • • • • • 26
• 26
• 26
• 26
• 27
• 27
• 28
• 29
• 29
• 30

30
• • 30

30

• • 31
• 31
• 31

31
• 32

5

Free Area Queue Element •
GETMAIN
FREEMAIN

CHAPTER 4: CONTENTS SUPERVISION •
Contents Supervision Routines •
Contents Supervision Control Flow •

LINK
LOAD
XCTL
IDENTIFY
DELETE
SYNCH •
FINCH •

CHAPTER 5: PROGRAM FETCH
Program Fetch FUnctions
Program Fetch Control Flow

Initialization
Loading

overlay Modules
End-of-Extent Appendage •
Input/Output Errors

Relocation (Adjusting Address Constants)
Termination

CHAPTER 6: OVERLAY SUPERVISION
Tables Used by Overlay Supervision

Use of Segment Table
Use of Entry Tables

Branching to a Segment Not in Main Storage
Eranching to a Segment in Main Storage

Overlay Supervision Routines
Overlay Supervision Control Flow

Initialization
Updating Tables
Segment Loading •
Termination •

CHAPTER 7: TIME SUPERVISION (OPTIONAL)
Time Supervision Routines
The Timing Algorithm
Time Supervision Control Flow •

STIMER
TIME
TTU1ER
Timer Sr.IH

Queueing Subroutine •
Dequeueing Subroutine •

CHAPTER 8: SYSTEM ENVIRONMENT RECORDING.
Systems Without System Environment Recording
Entry to System Environment Recording •

SER Routines
SERO

Resident J:.!odule -- IFBSROOO
Link Library Module -- IFBSROxx

SERl
Environment Recording Area

CHAPTER 9: CHECKPOINT/RESTART.
CHECKPOINT (SVC 63)

6

Initialization Modules (IGC0006C, IGC0106C, IGC0206C)
CANCEL Processing
Check I/O Module (IGC0506C)
Preserve Modules (IGCOA06C, IGCOD06C)
Checkmain Module (IGCOF06C)
Resume 1/0 Module <IGCON06C}

32
33
33

34
34
35
35
35
35
36
36
36
36

37
37
37
38
40
41
42
42
42
42

43
43
43
44
44
45
46
47
47
48
48
48

49
49
49
50
51
51
51
51
51
51

52
52
52
52
52
53
53
54
55

56
56
56
57
57
57
57
58

Exit Module (IGCOQ06C)
Message Module (IGCOS06C)

RESTART (SVC 52) ••••••
Initialization Modules (IGC0005B, IGC0105B) •
Repmain Module (IGC0505B) • • • • • • • •

• • • 58
• 58

• • • • • • • 58
• • • • . • 58

Job File Control Block Processing Modules (IGCOG05B, IGCOI05B)
Mount/Verify Modules (IGCOK05B, IGCOM05B) ••••••••••
Non-Direct Access Processor Module (IGCOL05B) • • • • • • • •
Position I/O Modules (IGCON05B, IGCOQ05B, IGCOP05B, IGCOR05B)
Final Processing Module (IGCOT05B) •••••••••••••
Exit Module (IGCOV05B) •••••

• 59
59

• 59
• 60

• • • 60
• 60
• 61

CHARTS

APPENDIX A: INITIAL PROGRAM LOADER (IPL)
IPL Organization • • • • •
IPL Control Information •

IPL Tables • • • • • • • •
IPL Control Flow • • • • • • • •

Nucleus Selection • •
Hardware Initialization.
Nucleus Location ••••
control Section Data organization
IPL Relocation • • • • •
Nucleus Load • • • •
RLD Relocation
Common I/O

• 62

• • • 82
• 82
• 82
• 83

• • • 84
• • • • • 84

• • • 84
• • 84

• 85
• • • 85
• • • 85

• 86
• • • 86

APPENDIX B: NUCLEUS INITIALIZATION PROGRAM (NIP) •••• • • • 88
NIP Functions • • • • • • • . • • • • • 88

CVT Initialization • • • • • 89
Dynamic Area Initialization •• •••• • • • • • • • 89
Boundary Box Initialization ••••• • 89
Free Area Queue Element Initialization • 90
SYSl. SVCLIB, SYSl. LINKLIB, and SYSl. LOGREC DEB Initialization ••• 90
SVC Table Extension (TTR Table) Initialization • • • • • 91
Protection Key Initialization • • • • • • • . • • • 92
Timer Initialization • • • • • • • • • • • • • • • 92
Building a Resident Directory for SYS1.LINKLIB ••••••• 93
Resident Access Method (RAM) Initialization. • • • •••• 93
Resident Type 3 And 4 SVC Routine Initialization • 94
Resident Job Queue Initialization. • • • • • • • 94

APPENDIX C: RESIDENT SUPERVISOR MODULES

APPENDIX D: PROGRAM FETCH RECORD FORMATS
Control Record - (Load Module) ••••••
Relocation Dictionary Record - (Load Module) ••••
Control and Helocation Dictionary Record - (Load r--iodule)
Partitioned organization Directory Record - (as Received from

Module Attributes • • • • • • • .

APPENDIX E: ENQ/DEQ QUEUE CONTHOL BLOCK (QCB) FORMATS •
Major Queue Control Block (Major QCB)
Minor Queue Control Block (Minor QCB) •

APPENDIX F: ENTRY AND SEGMENT TABLE FORMATS •
Entry Table (ENTAB) . • • • • • •
Segment Table (SEGTAB)

APPENDIX G: SERO AND SER1 RECORD ENTRY FORMATS

• • • 95

• 97
• 97
• 98

• • • 99
BLDL) .100

.101

• •• 102
.102

• .103

• •• 104
• .104

• •• 105

.106

APPENDIX H: CHECKPOINT/RESTART RECCRD FORMATS AND MODULE LIST •••• 109
Record Formats • • . • • . •

CHECKPOINT Header Record (CHR)
Core Image Record (CIR) • •
Data Set Descriptor Records •

Type 1 DSDR • • • • • • • •

.109

.109
• • • • • .109

• .110
.110

7

Type 2 DSDR •
Type 3 DSDR •
special Identifiers •

supervisor Record (SUR)
CHECKPOINT/RESTART SVC Module List
Checkpoint/Restart Register Usage Table •

INDEX •

8

.110

.110

.110

.111

.112

.113

.114

FIGURES

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.

Figure 15.
Figure 16.

Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.

CHARTS

Chart 01.
Chart 02.
Chart 03.
Chart 04.
Chart 05.
Chart 06.
Chart 07.
Chart 08.
Chart 09.
Chart 10.
Chart 11.
Chart 12.
Chart 13.
Chart 14.
Chart 15.
Chart 16.
Chart 17.
Chart 18.
Chart 19.
Chart 20.

Transferring Control Using Request Blocks •••• • 12
Request Block Queues • • • • • 13
Relocation Table • • • • • • • • ••• 17
SVC Table ••••.••.•• . . . • • • • . • 18
Extended SVC Table (Optional) • 18
IRB Format Options • • • • • • • 21
Program Interruption Element (PIE) Format • • • 26
STAE Control Block (SCB) Format • • • • • • • • 26
ENQ Parameter List • • • • • 28
Main Storage Organization •••• • • • • • • • 32
Program Fetch Work Area • • • • • • • • 38
Note List (in Main Storage) • • • • • 38
Blocks and Tables Used by Program Fetch ••••• • 39
Typical Load Module (Logical Format on Direct-Access
Device) . • 40
Conditions Affecting Channel Program Mode ••••••
Typical Load Module (Physical Format on Direct-Access

• 40

Device) • • • • • • • • • • • • • • • • • •
Single-Region Overlay Structure • • •
Overlay Program Upward Branch ••••
Branch to Segment not in Main Storage
Branch to Segment in Main Storage

• 41
• • • 43

• • • • • • 44
• 45
• 46

Chaining of ENTAB Entries Used to Branch to a Segment • • 47
Timer Queue •••••••••••
Timer Queue Element (96 Bytes) ••••
System Environment Recording
Problem Program Checkpoints •••••
CHECKPOINT Routine Control Flow
RESTART Routine Control Flow • • • •
Storage Layout Before and After IPL Relocation
Storage Layout at End of IPL Program Execution
IPL Error Types •••• •• • • • • • •

• 50
50

• 53
• 56
• 57

• • • • • 59
• 85
• 86

Boundary Box •
87

• • 89
90 Dynamic Area and Boundary Box Initialization

Free Area Queue Element (FQE) Built by NIP
DEB Initialization • • • • • • • • • • • • •

Fixed-Task Supervisor Control Flow • • •

• 90
· 91

• 62
Interruption Supervision Control Flow • • • • • • • • • • 63

64
65

Task Supervision Control Flow • • • • • •• • •
ENQ/RESERVE Service Routine (IEAAENQO) • •

• 66 DEQ Service Routine (IEAADEQO) • • • • •
Validity Check Subroutine (IEAOVLOO) • • • • • • • • 67
Main Storage Supervision Control Flow • • • •
Contents supervision Control Flow • • • • • • • • •
Program Fetch Control Flow • • • • • • • •

• 68
• • • 69

• 70
PCI and Channel End Appendages • • • • •
Overlay Supervision Control Flow • •

• • • • • 71

Time Supervision Control Flow
SERO Link Library Module Control Flow • • • •
SERO Link Library Module Control Flow
SER1 Control Flow • • • • • • •
SER1 Control Flow • • • • • • •

• 72
• 73
• 74

75
• • • 76

• 77
• 78 CHECKPOINT (SVC 63) Control Flow

RESTART (SVC 52) Control Flow
Initial Program Loader Control Flow

• • • • • • 79
• • 80

Nucleus Initialization Program control Flow • • • • • 81

9

The fixed-task supervisor is a group of
service routines that control the use of
the central processing unit (CPU) and main
storage of IBM System/360. This supervi­
sion, called task management in the IBM
System Reference Library, includes super­
vising the interfaces between processing
programs and the primary control program.
The primary control program is made up of
the service routines for task management,
data management, and job management. The
fixed-task supervisor provides the follow­
ing task management functions:

• Overlap of
operations
activity.

central processing unit
with input/output channel

• Servicing of all hardware interrup­
tions.

• Handling
(SVCs).

of all supervisor calls

• Allocation of main storage for programs
and data.

• Dynamic loading of programs not in main
storage.

• Synchronous overlay supervision.

• Use of the hardware timer (optional).

• Recording of machine malfunctions.

• Servicing requests for writing CHECK­
POINT records during the execution of a
program, and restarting programs at
these CHECKPOINTS.

The fixed-task supervisor is part of the
primary control program, which is used to
process batch jobs sequentially. The pri­
mary control program requires a main
storage capacity of at least 32,768 bytes,
and a minimum machine configuration that
includes direct-access auxiliary storage.

MAIN STORAGE AREAS

In the primary control program (PCP)·
environment, main storage is divided into
two areas: the fixed or system area and
the dynamic or processing program area.
The fixed area is used for system routines
that perform control functions during the
execution of a processing program. The
dynamic area is used for a processing
program and its data, control blocks, and
tables.

INTRODUCTION

The fixed area is divided into the
nucleus and two transient areas. The nu­
cleus contains the more frequently used SVC
routines. the interruption handlers, and
other routines and control information.
The transient areas are two buffers into
which less frequently used system routines
are brought from the system residence
volume. The first, called the SVC tran­
sient area, is 1024 bytes long and is used
for SVC routines. The second, called the
I/O supervisor transient area, is 1024
bytes long and is used for the input/output
supervisor's error handling routines.

DYNAMIC AREA USAGE

A processing program is loaded into the
lower section of the dynamic area. Rou­
tines that the processing program has
brought into main storage with a LOAD macro
instruction are placed in the upper section
of the dynamic area, the section with the
numerically-greater main storage addresses.
These routines, which may be system or user
routines, remain in main storage for the
duration of the job-step that loaded them,
unless they are removed by using the DELETE
macro instruction.

When the processing program issues a
LINK macro instruction, the fixed-task
supervisor loads the requested routine into
main storage following the processing pro­
gram. If this routine LINKs to another
routine, the second routine follows the
first in main storage. When one of these
routines issues a RETURN macro instruction,
control returns to the program or routine
that issued the LINK. For example, if
routine A LINKs to routineB, routine B
finishes and returns to A, and routine A
then LINKs to routine C, the fixed-task
supervisor overlays routine B with routine
C.

When a routine issues an XCTL macro
instruction, the main storage area occupied
by the routine is freed (if the routine was
not originally brought into main storage
with a LOAD macro instruction). If the
requested routine had not been loaded into
main storage previously, it is brought into
the lower section of the dynamiC area.

Main Storage may be expanded by includ­
ing IBM 2361 Core Storage in the system.
Main Storage Hierarchy Support for IBM 2361
Models 1 and 2 permits selective access to
either the processor storage portion
(hierarchy 0) or IBM 2361 Core Storage

Introduction 11

portion (hierarchy 1) of main storage. A
hierarchy parameter (HIARCHY=) in the LINK,
LOAD, XCTL, ATTACH, GETMAIN, GETPCOL, and
DCB macro instructions permits specifica­
tion of either hierarchy as desired. If
IBM 2361 Core Storage is not included in
the system, requests for storage within
hierarchy 1 are obtained from processor
storage.

TASK CONTROL BLOCK (TCE)

Processing programs that operate in a
fixed-task environment do so as part of a
task, a unit of work for the central
processing unit (CPU). In PCP there is one
task control block (TCE). It is used to
record information about the user's pro­
gram. The TCE is initialized by the Nu­
cleus Initialization Program (NIP) and is
used sequentially by each task performed
within the dynamic area. (NIP is described
in Appendix E.)

The TCB. is 172 bytes long, with an
additional 32 bytes preceding the first
byte (when required) as a floating pOint
register save area. The format and
contents of the TCB are given in the
publication IBM System/360 Operating Sys­
tem: System Control Blocks, Form C28-6628.

REQUEST BLOCK (RE)

There may be any number of programs
(logically distinct sections of code) ready
to be executed. Control passes from one
program to another through a branch, LINK,
XCTL, ATTACH, or as the result of an
interruption for which an asynchronous exit
has been specified. Every transfer of
control other than a direct branch is
handled by the supervisor.

Handling such transfers requires the
maintenance of information allowing the
supervisor to return control through the
same sequence of programs but in reverse
order. For example, if A links to Band B
links to C, the supervisor must have the
necessary information to return control to
B when C completes operation and then to A
when B completes operation. The request
block contains this information.

Request blocks are chained together to
indicate how control should be transferred.
Each request block (RB) addresses the RB of
the program which will receive control when
the program governed by the first RB com­
pletes operation. The last element in the
chain is the RB for the first program
executed under the task control block
(TCB) • This RB addresses the TCB instead
of another RB.

12

In the preceding example, the RE for
program C addresses the RB for program E.
This RB addresses the RB for program A,
which points to the TCE. The TCB itself
addresses the RB most recently added to the
queue, in this case the RE for program C.
See Figure 1.

TCB
r------,
1 1<---------------------------,
1 1 1
1 1 RB C RB E RE A
1 1 r------, r------, r------,
1 1 1 1 1 1 1 1
1 ~--> 1 ~--> 1 r--> 1 1
1 1 1 1 1 1 1 1 1 1 l _____ -.J l ______ J l ______ J
l ______ J

• Figure 1. Transferring control Using
Request Blocks

Normally, one request block precedes the
processing program and each requested rou­
tine. Request blocks are queued from the
task control block (TCB). Request blocks
for active routines are queued on the
active request block queue; those for
loaded routines are queued on the loaded
program list.

The first request block (RB) is placed
on the active request block queue by NIP.
An RB for job management is substituted for
this first RB when NIP transfers control,
via XCTL, to job management.

In addition to addressing another RB or
the TCB, each RB contains the identifica­
tion of the requested program, the entry
point, the interrupted program status word
(resume PSW), the size of the request
block, the size of the program, and the
request block type.

There are six types of request blocks:

• Program Reguest Block (PRB) -- used to
control programs not previously loaded.

• Interruption Request Block (IRB)--used
to control system or user asynchronous
exit routines.

• System Interruption Request Block
(SIRB) -- used to control I/O super­
visor error routines. Only one SIRB
can exist at a given time.

• Supervisor Request Block (SVRB) -- used
to control type 2 (resident), type 3
(non-resident, unimodular), and type 4
(non-resident, multimodular) SVC rou­
tines. Types 2, 3, and 4 SVCs may be
enabled.

• Loaded Program Request Block (LPRB)-­
used to control programs that are
LOADed and are ATTACHed, LINKed, or
XCTLed; also used to control sections
of programs that are specified by the
IDENTIFY macro instruction and are
ATTACHed.

• Loaded Request Block (LRB) -- shortened
form of LPRB, used to control load
modules that have the "only-10adable"
attribute. (It is invalid to ATTACH,
LINK, or XCTL to these load modules.)

The standard formats for all request
blocks and a description of their contents
are given in the publication IBM System/360
Operating System: System Control Blocks,
Form C28-6628.

REQUEST BLOCK QUEUEING

The TCB addresses two request block (RB)
queues: the active request block queue and
the loaded program list (see Figure 2).

r----------------------,

I
I
I
I
I
I
I
I
I
I
I

I
I Active Request Block Queue
~---,
I I
I I

TCBRBP~---~------, I
I I I
IXRBLNK~--~------, I
I I I I r------, I
I I I XRBLNK ~--+r------, r--+I XRBSVq---, I
l ______ J I I I I I r-~ XRBPRE ~, I I

SIRB I I I XRBLNK ~-+-++f-------~ I I I
l ______ J I I I I I I I I I

SVRB I I I I IXRBLNK~-+-+~------, I
l ______ J I I I I I I I

IRB I I I I I XRBLNK ~----J
I L _____ J I I
I LPRB I I I l ______ J

Loaded Program List

r------, r------, r------, I
TCBLLS~---~XRBSUC~--~XRBSUC~--+lXRBSUC~- I

~---~ XRBPRE ~--~ XRBPRE 14---~ XRBPRE j4-__ J

r~------~ ~------~ ~------~
I I I I I I I
I I I I I I I
I I XRBQI=O I XRBQ~-, I I
I I I I I I I I I L _____ J L _____ J I l ______ J

I LPRB LPRB I LRB
I (Minor) I
I I l _____________________ J

I
I

PRB

I r------,
I +I XRBSUC I =0
l ___ ~ XRBPRE I

~------~
I I
I I
I I
I I l ______ J

LRB

l ______________________ J

TCB

Figure 2. Request Block Queues

Introduction 13

Active Request Block Queue

The active request block queue is made
up of PRBs, IRBs, SVRBS, LPRBS, and the
SIRB. There is one request block (RB) for
each program to be executed. TCB field
TCBRBP addresses the first (current) RB on
the queue. Field XRBLNK of each RB on the
queue addresses the next RB on the queue.
XRBLNK of the last RB on the queue
addresses the TCB.

Loaded Proqram List

The loaded program list contains LRBs
and LPRBs in a two-way chain. Each loaded
program is represented in this list. The
TCB, through the pointer named TCBLLS,
points to the first RB on the loaded
program list. The RBs on the list are
chained through the XRBSUC and XRBPRE
fields. XRBPRE for the first RB in the
queue points to the TCB. XRBSUC for the
last RB on the list contains zero.

An LPRB may also appear on the active
request block queue. If it does, it is
maintained on both queues simultaneously by
two different sets of pointers.

FIXED-TASK SUPERVISOR COMPONENTS

The fixed-task supervisor is composed of
the following major components, "each of
which is a functional grouping of super­
visor service routines or subroutines:
interruption supervision. task supervision,
main storage supervision, contents supervi­
sion, program fetch, overlay supervision,
time supervision, system environment re­
cording, and checkpoint/restart.

INTERRUPTION SUPERVISION

The interruption
routines handle all
first or introductory
they:

supervision service
interruptions on a

level. To do this

14

• Save information about the environment
(machine status) at the time of the
interruption so that the environment
may be recreated later.

• Determine what action needs to be taken
and set up the routines needed.

• Route control to the needed routines.

• Return to the interrupted environment.

TASK SUPERVISION

The task superv1s10n service routines
maintain control information. They main­
tain the current status of progra~ and
interruption request blocks, task control
blocks, and event control blocks. The task
supervision service routines are responsi­
ble for modifying and terminating task
operations.

MAIN STORAGE SUPERVISION

The main storage supervision service
routines establish the availability of main
storage and dynamically allocate that
storage to a task on request, within the
dynamic area.

CONTENTS SUPERVISION

The contents supervision service rou­
tines maintain a record of the identity of
all programs and routines together with
their status and characteristics, within
the dynamic area. The contents supervision
service routines initiate program fetch for
the dynamic loading of programs, and rrain­
tain the active RB queue to represent
requests for the use of programs.

PROGRAM FETCH

The program fetch service routine is a
relocating loader which brings a program
module processed by the linkage editcr from
secondary storage into main storage.

OVERLAY SUPERVISION

The overlay supervision service routines
monitor the flow of control between seg­
ments of a program operating in an overlay
structure preestablished by the user
through linkage editor. These routines
ensure that all dependent program segments
are brought into main storage by ~rcgram
fetch before the actual branch is executed.

TIME SUPERVISION

The time supervision service routines
set and maintain a clock, and honor re­
quests for time intervals and time-of-day.

SYSTEM ENVIRONMENT RECORDING

The system environ~ent recording service
routines are optional control program rou­
tines that record and in some cases attempt

to minimize the effects of machine malfunc­
tions in System/360 Models 40, 50, 65, and
75.

CHECKPOINT/RESTART

The CHECKPOINT service routine writes a
copy of the requesting task's main storage
area and environment. The RESTART service
routine uses this copy to re-create, at a
later time, the conditions which existed
when the CHECKPOINT copy was written. The
RESTART service routine then gives the task
control. Checkpoint/Restart information is
applicable only to PCP.

FIXED-TASK SUPERVISOR CONTROL FLOW

As shown in Chart 01, flow in the
fixed-task supervisor is flow of inter­
ruption sUpervision, with alternate supple­
mentary flow paths through other fixed-task

supervisor components and other control
program service routines -- those of data
management, input/output supervision, job
management, linkage editing, and test
translation.

All interruptions in the central pro­
cessing unit, in the channels, or in the
devices attached to the channels, that
affect control program processing, are
placed before the interruption supervision
serv~ce routines along with information
identifying the cause of the interruption.
These interruption handlers pass control to
those parts of the control program that
service interruptions.

When the interruption has been serviced,
the interruption supervision service rou­
tines again receive control and return the
central processing unit <CPU) to the state
in which it was operating before the inter­
ruption occurred.

Introduction 15

CHAPTER 1: INTERRUPTION SUPERVISION

Interruption supervision provides first
level interruption handling: that is, con­
trol passes from the processing program to
the control program and back again. Inter­
ruption supervision service routines:

• Save the interrupted environment.

• Insulate interruption routines
each other.

f'rom

• Pass control to routines required to
service the interruption.

• Return control to the interrupted pro­
gram when servicing is completed.

In addition, interruption superv1s10n
provides, through the SVC handlers, all
interface operations associated with the
four types of supervisor call routines:

16

• Type 1 SVC routines. These are always
resident and are executed disabled.
They usually return control to the
interrupted program without entering
the dispatcher. A type 1 SVC routine
can use the services of another type 1
SVC routine through a direct branch.
It cannot use the services of any other
type routine because it cannot issue
SVC instructions (i.e. it cannot cause
interruptions). Examples are GETMAIN,
FREEMAIN, EXCP, WAIT, and EXIT.

• Type 2 SVC routines. These are also
resident; but they are partially
enabled, or they calIon other than
type 1 SVC routines. These routines
are completely reenterable. Examples
are LINK, LOAD, and XCTL.

• Type 3 SVC routines. These are like
type 2 routines except that they are
not resident. They are each brought
into the 1024-byte SVC transient area.
Examples are IDENTIFY, WTO, and LOCATE.

• Type 4 SVC routines. These are "multi­
phase- type 3 routines. That is, they
are too large to be brought into the
transient area at one time and ~ust be
brought in in phases, each later phase
overlaying an earlier one. Transfer of
control from one phase to another is
through XCTL. Examples are OPEN,
CLOSE, and EOV.

Note: Type 3 and 4 SVC routines can be
made resident. See "Resident Type 3
and 4 SVC Routine Option."

TO achieve a high response time for
input/output interruptions, interruption
supervision has a software-implemented dis­
abling subroutine called the pseudo disable
routine. This routine allows input/output
interruptions to be processed without the
requesting routine losing control -- the
routine which was interrupted regains con­
trol as soon as the input/output supervisor
has processed the interruption. Requesting
routines include those system routines,
such as the job management write-to­
operator routine, that must operate enabled
yet not lose control to another routine.

INTERRUPTION SUPERVISION ROUTINES

Interruption superv1s10n includes the
following service routines:

• SVC FLIH - The supervisor call first
level interruption handler does the
introductory work following an SVC in­
terruption, and prepares for the execu­
tion of type 1 SVCs.

• SVC SLIH - The supervisor call second
level interruption handler monitors the
SVC transient area and prepares for the
execution of types 2, 3, and 4 SVCs.

• Type 1 Exit This routine is the
exiting procedure for type 1 SVCs.

• EXIT - This SVC routine is the exiting
procedure for types 2, 3, and 4 SVCs.

• Dispatcher - This routine passes con­
trol from routine to routine, whether
system routine or processing program
routine. Through two subroutines, the
dispatcher sets up the mechanis~ to
handle asynchronous exits and monitors
the I/O supervisor transient area.

• I/O FLIH - The input/output first level
interruption handler does the introduc­
tory work following an input/output
interruption and the clean-up work
after the input/output supervisor
finishes second level handling.

• T/E FLIH - The timer/external first
level interruption handler does the
introductory work following any timer/
external interruption and the clean-up
work after the second level handling is
completed.

• P FLIH - The prograR first level inter­
ruption handler monitors all program
interruptions.

• PROLOG - This routine is used by P FLIH
to set up input parameters to the
ABTERM service routine of task supervi­
sion.

• MC FLIH - A machine check interruption
causes control to be given to a system
environment recording routine if one of
these is included in the system.
Otherwise, the system is placed in the
wait state.

• Validity Check - This routine is used
as a common subroutine by other system
routines, such as program fetch. The
validity check routine prevents program
interruptions caused by invalid
addresses (those pointing beyond the
boundaries of main storage) passed to
the control program by a processing
pro9ram. In installations that have
selected the hardware protection
option, this routine also checks for a
mismatch between the storage key of the
addressed block and the protection key
of the TCB.

SVC CONTROL INFORMATION

The supervisor maintains SVC control
information in the svc table and the relo­
cation table. These tables are in a module
called IEASVCOO, which is assembled during
system generation.

RELOCATION TABLE

The relocation table is used to relate
the SVC code number with its corresponding
entry in the SVC table. The relocation
table consists of a number of 1 byte
entries (each of which is addressed through
indexiny based on the SVC code numbers).
Each entry contains a number. If it is
zero, then the associated SVC code is
invalid. If it is non-zero, then the
number is an index to an entry in the SVC
table.

The relocation table is divided into two
sections. The first section contains
entries for IBM codes (that is, codes
assigned to IBM-provided SVC routines).
There is one entry for each code number
from 0 to (but not including) "High IBM
Code", whether or not the SVC code is in
use in the system.

The second section contains entries for
user codes, with one entry for each code
number from 255 to (but not including) "Low

User Code", whether or not the SVC ccde is
in use in the system.

The size of the relocation table is
variable; its maximum size is 256 bytes.
Both the size and the contents of the table
are determined during system generation
(based on the SVC routines included in the
system). The relocation table format is
shown in Figure 3.

I 1 byte I
r--------l
I I
~--------~
I I
~--------~
I I
~-------~
I I
~-------~
I I
~--------~
I I
~--------~
I I
~--------~
I I
~--------~
I I
~--------~
I I
~-------~
I I
~--------~
I I
~--------~
I I
~--------~

I I
~--------~
I I
~-------~
I I
~--------~
I I
~--------~
I I
~--------~
I I L ________ J

- - - - - - - - - - - - - - - 0

Each entry in this
section corresponds to
an IBM SVC code number

<Ranging upward
from 0 to highest)

Value in each entry
in both sections points
to an SVC table entry

High IBM Code

255

Each entry in this
section corresponds to a
user SVC code number

(Ranging downward
from 255 to lowest)

- - - - - - - - - Low User Code

Figure 3. Relocation Table

SVC TABLE

The SVC table is divided into two sec­
tions. The first section contains a 3-byte
entry for each type 1 or type 2 SVC
routine. The second section contains a
1-byte entry for each type 3 or type 4 SVC
routine.

Chapter 1: Interruption supervision 11

Each 3-byte entry contains a 24-bit main
storage address with the three low-order
bits defined as zero. This address is the
address of an SVC routine. The three
low-order bits of this address are used to
indicate the number of double-words
required for the extended save area (ESA)
in the request block (RB). Each 1-byte
entry contains the extended save area
information in the last three bits. If the
three bits are zeros, a type 1 SVC is
indicated. The svc table is shown in
Figure 4.

Bits:
1-----------21------------1-3-1
r-------------------------T---'
I Addrtss I ESA 1
t-------------------------+---~
I I 1
t-------------------------+---~
I 1 I l _________________________ ~ ___ J

3-byte entries for type 1 and 2 SVC rou­
tines

Bits:
1--5 --1-3-1
r-----T---l
I 0 IESAI
t-----+---~
I I I
t-----+---~
I I 1 l _____ ~ ___ J

1-byte entries for type 3 and 4 SVC rou~
tines

Figure 4. SVC Table

Extended SVC 'l'able (Opt ional>

The SVC table may be extended during
system generation so that each entry is
four bytes long. The entry for a type 1 or
2 SVC routine contains a high order byte of
zeros and a 24-bit address which includes
the ESA information. Each entry for a type
3 or 4 SVC routine contains the track
address (TT) of the transient svc routine
in the first field, the record number (R)
on the track in the second field, the
length of the first text record in the
third field, and the size of the extended
save area in the last field. The extended
svc table is shown in Figure 5.

Note: This option must be selected if the
resident type 3 and 4 SVC routine option is
chosen.

18

Bits:
1----8----1-----------21-----------1-3-1
r---------T------------------------T---'
I 0 0 1 Address IESAI
~---------+------------------------+---~
1 I I I
t---------+------------------------+---~
I 1 1 I l _________ ~ ________________________ ~ ___ J

4-byte entries for type 1 and 2 SVC rou­
tines

Bits:
1----10-----1-----8----1----11-----1-3-1
r-----------T----------T-----------T---'
ITT I R I Length IESAI
t-----------+----------+-----------+---~
I I I 1 I
t-----------+----------+-----------+---~
I I I I I l ___________ ~ __________ ~ ___________ ~ ___ J

4-byte entries for type 3 and 4 SVC rou­
tines

Figure 5. Extended SVC Table (Optional)

INTERRUPTION SUPERVISION CONTROL FLOW

Interruption supervision control flow,
shown in Chart 02, starts with an inter­
ruption. The five types of interruptions
are svc, input/output, timer/external, pro­
gram, and machine check.

SVC INTERRUPTIONS

When an SVC interruption occurs, there
are two paths to the requested SVC routine.
These paths are described under SVC entry
procedures. When the SVC routine com­
pletes, there are two paths of return.
These paths are described under SVC exiting
procedures. The dispatcher is discussed
after the entry and exiting procedures (to
show the flow back to the processing
program).

SVC Entry Procedures

Entry to SVC routines is handled by the
svc FLIH and the SVC SLIH. The execution
of any SVC instruction causes the hardware
to give contrel to the SVC FLIH by loading
a new program status word (PSW) that is
disabled for all maskable interruptions
except machine check. The SVC instruction
contains an 8-bit code which the svc FLIH
checks to determine which service routine
is required.

All registers are stored in the SVC save
area. The SVC code is compared to the
largest valid IBM-provided value plus one.
If the code is equal to or larger than the

maximum, the code is analyzed to determine
whether the request is for a user-provided
SVC routine. The task is abnormally ter­
minated if the SVC code is not valid. If
the code is a valid IBM code, but is not
supported in this system, the SVC instruc­
tion is treated as a no-operation (NOP).

Next, the SVC FLIH determines whether
the requested SVC routine is listed in a
resident SVC table. If listed, the address
of the SVC routine is used to enter the
routine.

When the request is for other than a
type 1 SVC routine, the FLIH branches to
the SVC SLIH after moving the original
register contents to the TCB. The SLIH
creates SVRBs for types 2, 3, and 4 SVC
routines. If the routine is a type 2 SVC,
the SLIH passes control to the routine
directly. If the routine is a type 3 or
type 4, then the SLIH passes control only
after the routine has been placed in the
transient area via the FINCH routine
(described in Chapter 4).

The SVC SLIH first separates type 2
requests from types 3 and 4 so that the
SLIrl's SVRB creation and initialization
subroutine can be executed immediately.
For type 3 and 4 requests, the svc SLIH
initializes and, if necessary, fetches the
required routines.

The SVRB creation and initialization
subroutine stores the requestor's PSW in
the current request block and then creates
an SVRB for the called routine. The size
of the SVRB is determined from the three
low-order bits of the SVC Table entry for
the called routine. (This entry has been
placed in register 6 by the SVC FLIH.) The
three low-order bits of the entry contain a
value between 1 and 7. This value minus
one is equal to the number of double words
required for the request block extended
save area.

After determining the size of the SVRB,
the SVRB creation and initialization sub­
routine clears the three low-order bits of
register 6 and issues a GETMAIN for the
SVRB. The subroutine then initializes the
SVRB and queues it on the active RB queue.

If the SVC routine is a type 2, regis­
ters 0, 1, and 15 are restored from the
save area of the SVRB, environmental regis­
ters are loaded, and the type 2 SVC routine
is entered.

If the svc is a type 3 or 4, the SLIH
examines the SVC table, extracts informa­
tion telling the size of the extended save
area needed in the SVRB, and creates ahd
initializes the SVRB.

If the current transient area occupant
is not the requested routine, the requested
routine must be loaded by FINCH, which is
entered by a BALR. When the loading is
completed, FINCH returns control to the SVC
SLIH.

The separate phases of type 4 SVC rou­
tines bring each successive phase into the
transient area by using XCTL until the
phases are completed. The final phase
issues an SVC EXIT instruction.

SVC Exiting Procedures

There are two exiting procedures for SVC
routines Type 1 Exit and EXIT. Type 1
SVC routines (with the exception of EXIT)
return to the Type 1 Exit Routine for
handling. Type 1 Exit passes control to
the dispatcher or to the interrupted pro­
gram -- either a processing program cr a
service routine. Types 2, 3, and 4 SVC
routines return to the EXIT Routine. EXIT
dequeues the SVRB from the TCB's active RB
queue and passes control to the dispatcher.

TYPE 1 EXIT: Type 1 SVC routines branch to
the type 1 exit routine when they complete
processing. The type 1 SVC indicator is
reset to zero, and registers are reloaded
from the type 1 register save area of the
SVC FLIH. The first word of the TCB
pointer (IEATCBP) is compared to zero. If
IEATCBP does not equal zero, it means a
task switch has not been indicated, and the
requestor of the exiting type 1 SVC is
reentered by loading the SVC old PSW. If
IEATCBP equals zero, a task switch is
indicated and the SVC old PSW is checked to
determine if the requestor was disabled for
any interruptions. If it was disabled, the
requestor retains control and is reentered
by loading the svc old PSW. If the re­
questor was fully enabled, registers are
saved in the task control block, the SVC
old PSW is saved in the current RB on the
active request block queue, and the type 1
exit routine branches to the dispatcher.

EXIT: Types 2, 3, and 4 SVC routines, as
well as asynchronous exit routines and
routines entered by supervisor-assisted
linkages, complete by using the EXIT rou­
tine directly or indirectly. USing EXIT
directly means issuing an SVC EXIT instruc­
tion. Using EXIT indirectly means issuing
a branch instruction with register 14 as an
operand (or issuing a RETURN macro instruc­
tion which expands to include a branch on
register 14), wh~re register 14 is preset
by the supervisor to point to an SVC EXIT
instruction in the nucleus.

EXIT determines the type of routine that
is exiting, performs the necessary terItinal
procedures for the routine, and prepares

Chapter 1: Interruption Supervision 19

for return to the routine in control prior
to the exiting routine. In addition, EXIT
determines if the routine to receive con­
trol is an SVC routine executed in the
transient area. It is possible that the
sequence of events has caused the transient
area to be overlayed since the SVC routine
last had control. In this case, the tran­
sient area refresh subroutine of EXIT is
entered to restore the SVC routine to the
transient area.

EXIT passes control to either the dis­
patcher, a processing program, an asynchro­
nous exit routine, or the task termination
routine. The first and most common place
is the dispatcher. The second, a process­
ing program, is given control when the exit
is from a program interruption routine.
The third, an asynchronous exit routine, is
given control when the exiting routine is
an asynchronous exit routine and there are
additional requests for the routine (RQEs)
queued on the IRB under which it is operat­
ing. The fourth, the task termination
routine, is given control when the return­
ing program is the highest control level
for a task.

~hen entered, EXIT resets the type 1
switch because, although EXIT is entered as
a ty[e 1 SVC routine, it does not return
through the normal type 1 exit. This is
because it is a transitional routine which
passes control from one program to another.

After setting the type 1 switch, EXIT
deterrrines if the exiting routine created
any STAE control blocks (SCEs) that were
not cancelled. If the XCTL-option was not
specified for these uncancelled SCBs, EXIT
updates the SCB pointer and frees the rrain
storage occupied by these SCBs.

EXIT next determines if the exiting
routine is a program interruption routine.
If it is, the address of a program inter­
ruption element (PIE) is loaded from TCB
field TCBPIE. The PIE contains the PSW and
the contents of registers 14 through 2 that
were in effect when the prograrr interrup­
tion occurred, unless they were modified by
the user's program interruption routine.
Tne right half ef the PSW saved in the PIE
is meved to the SVC old PSW, registers 14
through 2 are loaded frem the PIE register
save area, and the SVc old pm~ is leaded te
return control to the processing program.
Unless the user's program interruption rou­
tine modified the values in the PIE or in
registers 3 through 13, the processing
program regains control at the instruction
following that which caused the program
interruIJtion.

If the exiting routine is not a program
interruption routine, EXIT:

20

1. Saves registers 10 through 1 in the
register save area of the TCB,

2. Obtains the address of the RB for the
exiting routine from TCB field TCBRBP,

3. Obtains the address of the RB for the
routine next to receive control from
field XRBLNK of the exiting program's
RB.

EXIT determines if the exiting RB is an
IRB or the single SIRB in the system.
(Both IRBs and the SIRB are discussed under
Dispatcher and Exit Effector.) If it is
either, EXIT determines if the RB has:

• Interruption queue elements (IQES) with
4-byte link fields.

• IQEs with 2-byte link fields.

• No IQEs.

If the RB has interruption queue ele­
ments, the IQE at the top of the RB's XRBQ
queue is removed. If the IQE has a 2-byte
link field, the IQE is returned to the I/O
supervisor to be placed on its list of
available queue elerrents. (In the I/O
supervisor program logic manual, IQEs with
2-byte link fields are called request ele­
ments.) Interruption queue elements with
4-byte link fields are not queued on any
other queue and are effectively discarded
when they are removed from the XRBQ unless
the NEXAVL field of the IRB exists, in
which case they are returned to this queue.

The RB is checked for more queue ele­
ments. If there are more, and if the new
top IQE has a 2-byte link field, the
address of the top IQE is loaded into
registers 1 and o. If the top queue
element has a 4-byte link field, register 0
contains the address of the IQE, as before,
but register 1 contains the data froIT the
second 4-byte field of the queue element.
In either case, the return address to be
used by the asynchronous exit routine is
loaded in register 14, and the entry point
address of the asynchronous exit routine
from the XRBEP field of the RB is leaded
into register 15 before the routine is
entered. The first word of the RB, poten­
tially the register save area address, is
loaded into register 13.

If there are no other IQEs queued on the
RB, the saved registers are moved froIT the
RB'S register save area to the TCB's
register save area. The exiting RB is
de queued from the task's active request
block queue, and the routine to receive
control is checked to see if it is in a
wait state. If it is, the first word of
the TeB pointer is set to zero, indicating
that a task switch is necessary. If the RB

is not waiting, the status bits in the RE
for the routine to regain control are
checked to see if the routine is a type 3
or 4 SVC. If it is, the name field in the
request block (XRBNM) is compared to the
name of the routine in the transient area.
If the routine is not in the transient
area, the transient area refresh subroutine
is entered to bring it in. EXIT branches
to the dispatcher.

Dispatcher

Loading a PSW to pass control to a
routine associated with a request block is
called dispatching. The dispatcher re­
ceives control through a branch from EXIT,
type 1 exit, I/O FLIH, or T/E FLIH. The
dispatcher gives control either to the
routine last in control or to a different
routine, or places the machine in a wait
state.

After receiving control, the dispatcher
first determines if there are any asynchro­
nous exit routines to be scheduled. If
there are, the dispatcher enters Part 3 of
the exit effector to schedule these rou­
tines. Then it examines the first word of
the TCB pOinter, IFATCBP, and dispatches
the task whose TCB is addressed. In sys­
tems with the timer option (see Chapter 7),
the dispatcher dequeues the timer element
for a task time request before entering the
wait state, and enqueues it again when
leaving the wait state.

When dispatching a task, the dispatcher
places the address of the task ~n both
words of the TCE pointer, restores the
registers, and loads the resume PSW. If
the task is not ready, the dispatcher
places the computer in a wait state by
turning on a bit in the resume PSW before
loading it.

The dispatcher has a very important
subroutine called the exit effector. The
exit effector schedules the input/output
supervisor's error routines using the I/O
supervisor transient area and schedules
requests to enter asynchronous exit rou­
tines by:

• Initializing an IRE or the SIRE.

• Placing the IRE or the SIRE on the
active RE queue.

• Manipulating the saved registers to
allow the dispatching of the asynchro­
nous exit routine.

EXIT EFFECTOR: The exit effector consists
of three parts. The first two parts are
used ty routines that require asynchronous
exits. The third part is a dequeueing
routine used by the dispatcher.

Part One: The first part of the exit
effector is the CIRE service routine. This
routine creates and initializes an IRE and,
if specified, acquires additional storage
within the dynamic area for a register save
area and a work area used for building
interruption queue elements (IQEs). The
address of the register save area is
located in the three low-order bytes of the
first word of the IRE. The format of the
IRE is shown in Figure 6.

r---,
I I
I 96 bytes (required) I
I I
~---~ I NEXAVL=*+4 (optional) I
~---~
I I
I Work'area for building IQES (optional) I
I I L ___ J

Figure 6. IRE Format Options

Part Two: The second part of the exit
effector is used by a calling routine to
schedule an asynchronous exit routine.
Part two queues the IQE provided in regis­
ter 1 as input, in FIFO order on either the
2-byte AEQ (asynchronous exit queue) or the
4-byte AEQ.

Part Three: The third, dequeueing part of
the exit effector is entered by the dis­
patcher when the dispatcher finds that the
AEQ points to an IQE. (Each time it is
entered, the dispatcher checks for entries
on the AEQ.) Part three dequeues the IQE
from the AEQ, finds the IRB and TCB asso­
ciated with the IQE, queues the IQE on the
IRE and the IRE on the TCE's active RB
queue. When two or more IQEs refer to the
same IRB, they are queued in first-in/
first-out (FIFO) order.

Part three ensures that no IRB is sched­
uled for a task which has the SIRB on its
active RE queue. The interruption queue
element remains on the asynchronous exit
queue to defer scheduling of the current
IRB until the SIRE is inactive.

ENTRY TO ASYNCHRONOUS EXIT ROUTINES: The
name of the error routine to receive con­
trol is generated using information in the
UCB pointed to from the second half-word of
the IQE. If the requested routine is in
the I/O supervisor transient area, the
routine is dispatched. Otherwise, FINCH
(described in Chapter 4) brings the routine
into the I/O supervisor transient area and
ensures that the return address, entry
point, and IQE address are in the registers
and that the current error routine entry
point is addressed by the SIRB.

Chapter 1: Interruption Supervision 21

EXITING FROM ASYNCHRONOUS EXIT ROUTINES:
When the asynchronous exit routine for the
first IQE is completed, EXIT is entered.
The IQE is then dequeued from the IRB and
is either returned to the I/O supervisor or
queued on the NEXAVL field that immediately
follows the IRB, or discarded.

If there are no additional IQEs queued
on the IRB when an asynchronous exit rou­
tine returns, EXIT dequeues the IRB frOI£.
the active RB queue. If there are addi­
tional IQES queued on the IRB. the neces­
sary initialization steps are executed and
the IRB routine is reentered directly.

If the IRB and a work area were obtained
by using part one of the exit effector. the
work area is freed when the IRB is freed.
If the IRB is to be reused. it is dequeued
but is not freed.

Resident Type 3 and 4 SVC Routine Option

During system generation, the user can
select the resident type 3 and 4 SVC
routine option. Frequently used routines
can be made resident so they need not be
brought into the transient area each time
they are required. A resident type 3 or 4
routine assurres the characteristics of a
type 2 routine except when it issues an
XCTL macro instruction (see Chart 08).

The following differences in operation
result when the user chooses the resident
option (and the optional extension of the
SVC table).

1. When the nucleus initialization pro­
gram (Appendix B) makes each type 3 or
4 routine resident, the routine's
entry in the SVC table is changed.
'The track address. record number and
length fields are overlayed by X'FF'
and the entry point address of the
routine. Each time a type 3 or 4 SVC
routine is requested. the SVC table is
checked. X'FF' (a nurrber larger than
any track address) indicates that the
entry corresponds to a resident type 3
cr 4 SVC routine. The format of each
entry for a resident type 3 SVC rou­
tine or for the first module of a
resident type 4 routine is:

Bits:
1----8----1------------21----------1-3-1
r---------T------------------------T---'
1 X, FF' 1 Entry Point Address 1 ESA 1 L _________ ~ ___ ~ ____________________ ~ ___ J

2. The SVC entry procedure for a resident
type 3 or 4 routine is similar to that
for a type 2 routine. A resident type
3 or 4 SVC routine does not require
the services of FINCH because. like a

22

type 2. the routine need not be loaded
into the transient area.

3. The SVC exiting procedure does not
require the services of the transient
area refresh subroutine if a resident
type 3 or 4 routine receives control
since a resident routine does not
operate in the transient area and
could not have been overlayed since it
last had control. The transient area
refresh subroutine examines the SVRB
of the SVC routine receiving control.
The SVRB indicates that the routine is
a type 3 or 4. If the entry point in
the SVRB does not correspond to the
SVC transient area entry point, a
resident type 3 or 4 SVC routine is
receiving control. If the entry point
is that of the transient area, a
non-resident routine is being
requested and the transient area must
be checked to ensure that the routine
has not been overlayed since it was
last used.

4. The XCTL service routine checks the
RSVC load list created by the nucleus
initialization program (Appendix B) to
determine if the SVC routine is resi­
dent or if it requires loading.

INPUT/OUTPUT INTERRUPTIONS

Certain events, such as errors or com­
pleted actions in an input/output device or
in the channel to which it is attached,
cause the number of the device and a word
of detailed information (about the status
of the channel and the nature of the event)
to be placed in storage. The I/O FLIH is
not cencerned with the channel scheduler or
with the details of input/output handling.
It performs machine interruption supervi­
sion and insulates the input/output inter­
ruption from other types of interruptions.
The I/O FLIH is given contrel by the
input/output new PSW. The I/O FLIH is
entered:

• Disabled for all maskable interruptions
other than machine check.

• In supervisor state.

The first instruction of the I/O FLIH is
a NOP/branch switch, set to a branch by the
first input/output interruption, allowing
input/output interruptions to be processed
in groups. The first interruption of a
group causes the I/O FLIH to execute some
initialization instructions which block any
further execution of this "first-time
logic" for successive interruptions in a
group. Registers two through nine are
saved.

If the system is not pseudo disabled,
the input/output old PSW is saved in the
current RB. The wait bit in the input/
output old PSW is set to zero (non-wait
state), and registers ten through one are
saved in the TCB's general register save
area.

If the system is pseudo disabled, regis­
ters 10 through 1 are saved in the inter­
ruption supervision pseudo disable save
area, and the input/output old PSW is
saved.

The I/O FLIH branches directly to the
part of the input/output supervisor which
handles interruptions. When it regains
control from the I/O supervisor, the I/O
FLIH sets the NOP/oranch switch to no­
operation and restores registers 2 through
9.

The pseudo disable switch is tested. If
it is off, the I/O FLIH enters the dis­
patcher. If it is on, the I/O FLIH
restores registers 10 through 1 from the
pseudo disable save area, and returns con­
trol to the interrupted routine by loading
the input/output old PSW.

TIMER/EXTERNAL INTERRUPTIONS

Timer/external interruptions may come
from the optional hardware timer at loca­
tion 80, from the interrupt key on the
console, and from six external units. The
T/E FLIH in the fixed-task supervisor
handles two kinds of timer/external inter­
ruptions:

1. those caused by the optional hardware
tirr,er,

2. those caused by the interrupt key on
the console.

The T/E FLIH passes control to time super­
vision for second level handling of timer
interruptions and to job management's
external interruption routine for second
level handling of interrupt key interrup­
tions.

When an interruption occurs, the hard­
ware stores the current PSW in the timer/
external old PSW location, indicates the
cause of the interruption in the interrup­
tion code field in the T/E old PSW, and
loads the new PSW from the timer/external
new PSW location. This gives control to
the T/E FLIH.

The T/E FLIH saves registers 10 through
1 in the TCB, stores the timer/external old
PSW in a standard original old PSW location
(see program listing), and examines the

interruption code in the timer/external old
PSW to determine the interruption type.

When a supported interruption type is
identified, the T/E FLIH branches to the
appropriate second level handler. When the
interruption has been serviced, control
returns to the FLIH. Two supported inter­
ruptions may have occurred simultaneously.
In this case, the FLIH handles the second
interruption in the same way as the first.
After handling supported timer/external
interruptions, the FLIH branches to the
dispatcher.

If non-supported timer/external inter­
ruptions occur, the T/E FLIH returns con­
trol immediately to the interrupted routine
rather than to the dispatcher.

PROGRAM INTERRUPTIONS

If the program being executed attempts
an improper action, a program interruption
occurs and a code describing the attempt is
stored in the program old PSW. Irrproper
events causing program interruptions
include:

1. addressing non-existent operation
codes, and

2. attempting to execute privileged
instructions.

Users may specify fixed
decimal overflow, exponent
significance as additional
requiring special handling.

point overflow,
underflow and

improper events

If the user wishes to handle some or all
program interruptions, he first issues a
SPIE macro instruction which generates a
program interruption element (PIE) and
inserts its address in the TCB. The pro­
gram first level interruption handler
(P FLIH) is given control by the hardware
after any program interruption. The P FLIH
checks the TCB for an address of a PIE. If
no PIE address is present in the TCB, the
interruption is Unanticipated, and the P
FLIH passes control to the PROLOG routine
to initiate abnormal termination of the
task.

If a PIE address is present in the TCB,
the PIE is examined and the address of a
program interruption control area (PICA) is
extracted. The P FLIH tests the user's
program interruption mask in the PICA to
see if the user is handling the type of
program interruption that has occurred.
The type that has occurred is shown in the
interruption code in the program interrup­
tion old PSW. If the user is handling the
interruption, the P FLIH saves the old PSW
and registers 14 through 2 in the PIE.

Chapter 1: Interruption Supervision 23

Register 14 is loaded with a return
address, register 1 with the address of the
PIE, and register 15 with the address of
the user's routine. The P FLIH places the
address of the user's interruption routine,
obtained from the PICA, into the old psw,
restores the work registers from the save
area, and loads the modified old PSW to
return to the user's program at the entry
point of his program interruption handler.

The user may return to the main body of
his program from his program interruption
handling routine either by a direct branch
or by issuing a RETURN macro instruction.
If the user returns to the main body of his
program by a direct branch, he must reset
the first-time-entry switch in the PIE.

24

If the program interruption type is not
handled by the user, PROLOG is entered by a
branch. This routine sets up the abnormal
termination linkage and branches to ABTERM.

MACHINE CHECK INTERRUPTIONS

If the error detection equipment finds a
machine error, information representing the
internal state of the machine is placed in
the diagnostic scan-out area of Rain
storage. A machine check can cause control
to be passed to a system environment re­
cording routine if one of these is included
in the system environment. Otherwise, the
system is placed in the wait state.

The task sUpervision service routines
maintain control information, cause tasks
to be executed, and perform other task­
related services. Task supervision service
routines:

• Maintain task control blocks.

• Enter tasks into the wait state.

• Post completed events in the event
control block.

• Maintain control levels indicated by
request blocks.

TASK SUPERVISION ROUTINES

The task superv~s~on service routines
are functionally divided into two areas in
the fixed-task supervisor: task modifica­
tion and task termination.

TASK MODIFICATION

ATTACH: When an ATTACH macro instruction
is issued, the supervisor gives control to
the ATTACH service routine. The ATTACH
service routine passes control to the rou­
tine requested in the ATTACH macro instruc­
tion and regains control when the requested
routine completes. ATTACH optionally posts
an event control block to mark the comple­
tion, and, also optionally, passes control
to a user-specified exit routine. If no
special exit is specified, ATTACH returns
control to the attaching routine.

EXTRACT, SPIE, STAE: Through the EXTRACT,
SPIE, and STAE service routines, task
supervision allows the user to make better
use of the system's controls. EXTRACT
provides a processing program with informa­
tion contained in specified fields of the
task control blOCK. SPIE allows the user
to specify the address of an exit routine
to be entered when specified program inter­
ruptions occur. The SPIE routine sets the
program mask in the PSW as specified when a
SPIE macro instruction is given. STAE
allows the user to specify the address of
an exit routine to be entered when an ABEND
is scheduled for the task.

WAIT, POST: Through the WAIT and POS~
service routines, task supervision monitors
the movement of the task between the ready
and wait states. WAIT prevents the task
frolT' continuing until an event specified in
the WAIT macro instruction parameters has

CHAPTER 2: TASK SUPERVISION

taken place and has been indicated by the
execution of a POST macro instruction. As
an option, a WAIT routine to service mul­
tiple event completions may be chosen by
the user. POST signals that the event
represented by a specified event control
block has occurred. This may result in the
task being moved from a wait state to a
ready state.

ENQ, DEQ: For the shared direct access
device (shared DASD) feature only, task
superv1s~on serializes the use of shared
data through the ENQ and DEQ service rou­
tines, by indicating to the I/O supervisor
when it should reserve and release shared
direct access devices. If two CPUs share a
direct access device, then each CPU must
issue a RESERVE macro instruction (pro­
cessed by the ENQ service routine) before
using the device, and a DEQ macro instruc­
tion when finished using the device. This
prevents both CPUs from attempting to
access the same device simultaneously.

TASK TERMINATION

ABTERM, ABEND, ABDUMP: A task may be
terminated by itself or by the system.
Task supervision completes a task's execu­
tion through ABTERM and ABEND service rou­
tines. The ABTERM service routine
schedules the ABEND routine, which ter­
minates the task. The ABDUMP service rou­
tine is used when a full storage dump is
required.

TASK SUPERVISION CONTROL FLOW

As shown in Chart 03, flow of task
supervision is the flow of the individual
modular service routines. Each receives
control from interruption superv~s~on and
returns control to its particular exiting
procedure. The one exception is the ABTERM
routine, which is branched to by any ser­
vice routine, and returns to that routine
by a branch.

ATTACH

The ATTACH service routine searches for
the RB of the requested routine in the
loaded program list. If the requested
routine is not in the dynamic area, ATTACH
uses FINCH to bring it in. ATTACH places a
request block on the active RB queue for
the attached routine. Control is given to
the attached routine by loading a PSW with

Chapter 2: Task Supervision 25

an LPSW. The active request block queue is
ordered as follows:

• RB for the attached routine.

• SVRB for the ATTACH routine.

• RB for the attaching routine.

When the attached routine completes, the
ATTACH routine is dispatched and optionally
posts the event control block. If the
attaching routine specified an exit routine
in the ETXR parameter of the ATTACH macro
instruction, ATTACH places a request block
on the active RB queue for the exit rou­
tine. When the ATTACH routine completes,
the exit routine is dispatched, if this
option was specified. When the exit rou­
tine completes, the attaching routine is
dispatched.

EXTRACT

The EXTRACT service routine is entered
from interruption superv~s~on when the
EXTP~CT macro instruction is issued. Upon
entry, EXTRACT zeros all fields in the list
area specified by the user, except for the
task input/output table (TIOT) address
field. If the rracro instruction's param­
eters specified TIOT or ALL, the address in
the TCE of the TIOT is inserted into its
respective field in the user's list.
EXTRACT issues an SVC EXIT instruction on
completion.

SPIE

The SPIE service routine is used to set
up indications that the user has requested
program interruption control. SPIE is
entered by the SVC SLIH when a SPIE macro
instruction is given. Thirty-two bytes of
main storage space for a program interrup­
tion element (PIE) is obtained, and the
address of the PIE is saved in the TCB. In
creating the PIE (Figure 7>, the SPIE
routine places in the first four bytes the
address of the program interruption control
area (PICA) specified by the processing
program in the SPIE macro instruction. The
SPIE routine sets aside the second eight
bytes as a program interruption old PSW
save area, and the next 20 bytes as a
5-register save area.

A program mask whose contents is deter­
mined by the interruptions selected is
stored into the caller's resume PSW. SPIE
executes an SVC EXIT instruction on
completion.

26

°r--------------------------------------,
I I
I User's PICA Address I

4~--------------------------------------~
I I
I I
I Old PSW Save Area I
I I
I I

12~--------------------------------------~
I I

~ Register Save Area *
I I

32L--------------------------------------J
Figure 7. Program Interruption Element

(PIE) Format

STAE

The STAE service routine provides an
exit routine address at which control will
be returned to the user if an AEENL is
scheduled for his task. STAE is entered by
the SVC Second Level Interruption Handler
(SLIH) when a STAE macro instruction is
issued. The STAE service routine creates a
16-byte STAE control block (SCB) as shown
in Figure 8.

STAE also places the address of the SCB
in TCE field TCBNSTAE. If the task enters
abnormal termination processing, the
TCBNSTAE field is tested by the ABEND
routine to determine whether STAE process­
ing (the ABEND/STAE interface routine)
should be invoked for the task.

°r--------------------------------------,
I Zero or I
I Address of Previous SCB I

4~--------------------------------------~
I Address of STAE I
I Exit Routine I

8~--------------------------------------~
I Address of STAE Exit Routine I
I Parameter List I

12~--------------------------------------~
I Address of User's I
I Request Block I

16 L--------------------------------------J

• Figure 8. STAE Control Block (SCB) Format

WAIT -- SINGLE EVENT

When WAIT is entered by the SVC inter­
ruption handler, the wait count passed as a
parameter of the WAIT macro instruction is
tested for zero. If it is zero, the
routine returns immediately by branching to
the type 1 SVC exit. If it is non-zero,
then the resume PSW of the caller is
enabled for input/output and external

interruptions. The wait and complete bits
are tested in the ECB whose address was
passed by the macro instruction. When the
com~lete bit is on, indicating that this
event is already completed, WAIT branches
to the type 1 exit. If the wait bit is on,
indicating this event is already being
waited for, WAIT terminates the task by
branching to ABTERM. <Checking the wait
bit is performed only if the validity check
option is selected during system genera­
tion.) If neither bit is on, the wait bit
is turned on and the address of the current
RB is placed in the BCB. A wait count of
one is placed in the current RB, and the
first word of the TCB pointer, IEATCBP, is
zeroed as a signal to the dispatcher that
the task is waiting. WAIT returns by
branching to the type 1 exit in interrup­
tion supervision.

WAIT -- MULTIPLE EVENT

The WAIT service routine is entered by
the SVC FLIH as a result of a WAIT macro
instruction. Upon entry to the WAIT rou­
tine, the wait count passed as a parameter
is tested for zero. If it is zero, the
routine returns irrmediately by branching to
the type 1 SVC exit. If the wait count is
non-zero, the resume PSW of the caller is
enabled for input/output and external
interruptions. The wait count is saved and
a loop initialize~ to address the ECBs
addressed by the macro instruction parame­
ter list. An ECB counter is incremented as
each ECB is addressed.

As in single-event WAIT, on an optional
basis, the wait bit in the 'first ECB is
tested. If it is on, indicating that this
ECB is alrepdy being waited on, the next
ECB is addressed. If the wait bit is off,
the completion bit is tested. If the
completion bit is off, indicating that a
POST has not yet occurred, the wait bit is
turned on and the address of the current RB
is placed in the ECB. If this event has
already completed -- if the completion bit
is on -- the wait count is decremented and
tested for zero. If the count is not zero,
a test is made to see if this address is
the last element in the parameter ECB list.
If it is not the last element, the cycle is
repeated. If it is the last element, the
loop is exited. If the wait count becomes
zero, all the wait bits in the ECBs are
turned off and the WAIT routine exits to
the type 1 exit, without putting the cur­
rent RB into a wait state since its count
has already been satisfied.

When all ECBs have been addressed and
the wait count has not become zero, the
total number of ECBs specified is compared
to the original wait count. If the number
of BCBs specified is less than the count,

the count cannot be satisfied; the task is
abnormally terminated by scheduling ABEND
through a branch to ABTERM.

If the wait count is less than the
number of ECBs, a bit is turned on in the
RB to indicate to POST that a multiple­
event WAIT has been issued where the nurrber
of ECBs is greater than the wait count. If
the wait count is less than or equal to the
number of ECBs, WAIT inserts the wait count
into the current RB and sets the first word
of the TCB pointer to zero as a signal- that
the task is waiting. The WAIT service
routine returns by branching to the type 1
exit routine of interruption supervision.

POST

The POST service routine is entered by
the SVC FLIH after a POST macro instruction
is issued, but an alternate entry is pro­
vided so that system routines can branch
directly to POST. Upon entry, POST tests
the completion bit of the ECB whose address
was passed as an input parameter. If it is
on, indicating that the ECB has already
been posted, the POST routine returns by
branching to the type 1 exit or to the
system routine which entered POST.

If the completion bit is off, the wait
bit is tested to see if this event is being
waited on. If the bit is off, the comple­
tion code is placed in the ECB and the
completion bit is turned on. If the wait
bit is on, the RB wait count is decre­
rrented, the completion code is placed in
the ECB, the corrpletion bit is turned on,
and the wait bit is turned off. POST
returns by branching either to type 1 exit
or to the system routine which branched to
POST.

In systems with a multiple event WAIT,
POST performs further operations. When the
wait count in the RB is decremented to
zero, POST tests a bit in the waiting RB to
see if the number of ECBs specified in the
associated WAIT was greater than the wait
count specified.

If the number of ECBs was greater, then
POST turns off the wait bits in all ECBs in
the ECB iist specified which have not yet
been posted, to indicate that no one is
waiting for these events to be completed
and to prevent an erroneous POST. The
address of the ECB list is located in a
register save area belonging to an RB or to
the TCB. POST finds the addresses by
determining which RB is waiting. If RB 3
in the following diagram is waiting, the
address of the ECB list is in the register
1 field of the TCB register save area. If
RB 2 is waiting, the list address is in the
same field of the register save area of RB

Chapter 2: Task Supervision 21

3. If RB 1 is waiting, the address is in
the register save area of RB2.

TCB
r------,
1 1<---------------------------,
1 1 1
1 1 RB 3 RB 2 RB 1
1 1 r------, r------, r------,
1 1 1 1 1 1 1 1
1 "-->1 r-->I "-->1 1
1 1 1 1 1 1 1 1 1 1 l ______ J l ______ J l ______ J
l ______ J

If the number of events waited on equals
the number of events specified, the wait
bits are turned off by POST as the events
complete. After turning off the wait bits,
POST places the completion code in the ECB,
and returns.

ENQ

The ENQ service routine is entered froll'.
the SVC SLIH after a RESERVE or ENQ macro
instruction (SVC 56) is issued. ENQ rou­
tine control flow is shown in Chart 04.

On entry, register 1 contains the
address of a parameter list which the ENQ
routine scans to determine if the routine
was entered because of a RESERVE or a
normal ENQ. In PCP, a normal ENQ is
treated as no-operation (NOP) because
enqueueing operations are not required;
control returns to the calling routine.

RESERVE is used in PCP to permit direct
access storage devices to be shared. When
the ENQ service routine processes a RESERVE
macro instruction, it gives the requesting
task exclusive control of a specified
device via a hardware reserve. The task
frees the device with a DEQ macro instruc­
tion, resulting in a hardware release. If
the parameter list indicates that RESERVE
is requested, the ENQ routine tests the
parameter list for validity (see Chart 06).
The list must be in the format shown in
Figure 9.

If the parameter list is not in the
correct format, the ENQ routine issues an
SVC 13 to abnormally terminate the task
with a system error code of 438. If all
elements in the parameter list are valid,
the ENQ routine examines the major queue
control block (QCB) queue via the major QCB
origin in the CVT. (See Appendix E for
major and minor QCB formats.)

If there are no major QCBs (QCB pointer
in the CVT is zero) or if the major
resource name in the parameter list does
not match the maior resource name of any
major QCB on the queue the routine examines

28

the RET parameter of the ENQ macro instruc­
tion. If RET=TEST is specified (indicating
an inquiry), the return code in the parame­
ter list is set to zero to indicate that
the requested resource is available (has
not been previously reserved); control
returns to the calling routine. If RET=
TEST is not specified, ENQ creates a ll'ajor

Or---------T---------T---------T---------,
1 1 Rname 1 1 Return 1
1 FF 1 length 1 Codes 1 code 1

4t---------+---------~---------~---------~
1 1 Address of 1
1 0 1 Qname 1

8t---------+-----------------------------~
1 1 Address of 1
1 0 1 Rname 1

12t---------+-----------------------------~
1 1 Address of 1
1 0 1 UCB Pointer 1

16l---------~-----------------------------J

ENQ Parameter List

Byte 0 indicates the end of the ENQ param­
eter list (always a single entry
list for RESERVE).

Byte 1 length of the minor resource name.

Byte 2

Byte 3

Byte 4

Bytes
5-7

Byte 8

Bytes
9-11

Byte
12

Bytes
13-15

Figure

parameter codes:
Bit 0 -
Bit 1 -

Bit 2 -
Bit 3
Bit 4 -
Bits 5,

not used in PCP.
bits 1 and 4 must be 0 and
1 respectively, to indicate
the reserve function of
ENQ. If bits 1 and 4 are
not 0 and 1, ENQ is treated
as a NOP.
not used in PCP.
not used in PCP.
see bit 1-
6, and 7
001 - indicates RET=HAVE
011 indicates RET=USE
111 - indicates RET=TEST.

return code provided by the control
program if RET=TEST, USE, or HAVE
is specified.

zero.

address of the major
resource name.

zero.

address of the minor
resource name.

zero.

address of the UCB
pointer.

9. ENQ Parameter List

and minor QCB to indicate that the reques­
tor has control of the specified resource.
The routine inserts the UCB address of the
specified shared direct access device into
the minor QCB, and increments the ENQ count
in the TCB by one to indicate that the task
has reserved a resource.

In PCP, the ENQ count is only incre­
mented for RESERVE macro instructions
issued, since ENQs are NOPs. The ABEND
routine examines the TCB ENQ count to
determine if a purge of outstanding device
reservations is necessary during task ter­
mination. The ENQ routine increments the
UCB reserve count by one to indicate to the
I/O supervisor that reservation of the
device is required. This would prevent
another CPU from gaining access to the
device until the I/O supervisor determines
the UCB reserve count is 0 and releases the
device. Again, the routine tests the RET
parameter. If RET=TEST, RET=USE, or RET=
HAVE is specified, the return code in the
parameter list is set to 0 to indicate to
the requestor that the resource is avail­
able; control is returned to the calling
routine. If RET=TEST, USE, or HAVE is not
specified, the return code is not set.
Control returns to the calling routine.

If upon examining the major QCB pointer
in the CVT, the ENQ routine finds that a
major ~CB exists for the major resource
name specified in the parameter list, but a
minor QCB for the specified minor resource
name does not exist, the routine interro­
gates the RET parameter. If RET=TEST is
specified, the routine sets a zero return
code in the parameter list to indicate that
the requested resource is availatle and
returns control to the calling routine. If
RET=TEST is not specified, the routine
creates a minor QCB and queues it on the
major QCB to indicate that control of the
requested resource has been assigned to the
caller. The UCB address is placed in the
minor QCB, the 'I'CB ENQ count and UCB
reserve count are adjusted, and processing
continues as above.

If both a major and minor QCB exist for
the requested resource, the RET= parameter
is tested. If RET=TEST, USE, or HAVE is
specified, the routine sets the return code
to 8 to indicate that the requested
resource has already been acquired by the
requestor and control returns to the call­
ing routine. If RET=TEST, USE, or HAVE is
not specified, the ENQ routine issues an
SVC ABEND instruction to abnormally termin­
ate the requesting task.

DEQ

The DEQ service routine is entered from
the SVC SLIH when a DEQ macro instruction

(SVC 48) is issued. DEQ routine control
flow is shown in Chart 05. DEQ determines
whether the I/O supervisor should free a
shared direct access device which was
reserved by a previous ENQ.

On entry, register 1 contains the
address of a parameter list. The DEQ
routine performs a validity check of the
parameter list (see Chart 06). If the
Qname and Rname indicated by the seccnd and
third words of the list (see Figure 9) are
not valid, DEQ issues an SVC ABEND instruc­
tion with a system error code of 430. If
the Qname and Rname are valid, the routine
examines the major QCB queue. If no rrajor
QCBs exist, or the Qname specified in the
parameter list does not match the Qname of
an existing major QCB, control returns to
the caller. Control also returns to the
caller if a major QCB exists for the
specified Qname, but a minor QCB does not
exist, for the specified Rname.

If both major and minor QCBs exist for
the specified Qname and Rname, the DEQ
routine obtains from the minor QCB the
address of the UCB representing the direct
access device on which the resource
resides, and decrements the UCB ENQ count
ty one. If the UCB reserve count is then
zero, an EXCP macro instruction is issued
to release the device. If the UCB reserve
count is not zero, a release is not
performed.

The DEQ routine decrements the TCB ENQ
count by one to reflect the task's release
of the specified resource. The routine
removes the minor QCB from the minor QCB
queue and issues a FREEMAIN macro instruc­
tion to release the space occupied by the
rrinor QCB. If no more minor QCBS remain on
the queue, the routine removes the rrajor
QCB from the major QCE queue and frees the
space occupied by it. The DEQ routine
returns control to the calling routine.

ABTERM

Certain system routines branch to the
resident abnormal termination (ABTERM) ser­
vice routine to schedule the abnormal ter­
mination of a task. ABTERM returns to the
systerr routine by branching to the address
passed to ABTERM in register 14.

When entered by a type 1 SVC routine,
ABTERM saves the right half of the SVC old
PSW and replaces the right half with the
address of an SVC ABEND instruction. The
task completion code is stored in the
TCBCMP field provided in the TCB. After
turning off the type 1 switch in the SVC
FLIH, ABTERM loads registers 0 and 1 from
the type 1 SVC save area, restores regis-

Chapter 2: Task Supervision 29

ters and branches on register 14 as set by
the SVC routine which branched to it.

When entered by any other system rou­
tine, ABTERM locates the current RB on the
RB queue of the TCB, saves the wait count
from the RB, replacing it with a zero wait
count, and saves the right half of the
resume PSW from this RE. The task comple­
tion code is stored in the TCBCMP field in
the TCB. ABTERM replaces the right half of
the resume PSW in the RB with the address
of an SVC ABEND instruction, restores the
registers and branches on register 14 as
set by the system routine which branched to
it.

ABEND

The ABEND service routine is a type 4
SVC routine that is used for both normal
and abnormal termination of tasks. The
basic function of ABEND is to terminate all
internal activities of the current task and
give control via XCTL to the GO module of
job management to continue processing.

Normal Ena

When ABEND is entered for a normal
termination, it checks if all data sets
have been closed. If any data sets are
open, ABEND calls the data management CLOSE
routines. The task completion code is
stored in the TCBCMP field of the TCB, and
all main storage in the dynamic area is
designated as a free area. ABEND then
transfers control (through an XCTL) to job
management to initiate either the next step
of this job or the first step of a new job.

Abnormal End

When ABEND is entered for an abnormal
termination, it first determines, from TCB
field TCBNSTAE and from the reason for
entry, whether STAE processing should be
performed for the abnormally terminating
task. If STAE processing is indicated,
ABEND invokes the ABEND/STAB interface rou­
tine, which will eventually return control
to the user at the exit routine address
specified in the STAE macro instruction.

ABEND next determines if ABTERM was
entered. If it was, ABEND restores the PSW
and wait count to the RB that called ABEND.
If ABTERM was not entered, ABEND stores the
completion code in the TCBCMP field of the
TCB. ABEND purges all input/output opera­
tions initiated for this task using the
HALT I/O option. It performs validity
checking of the various system queues -­
such as main storage supervision queues,
contents supervision queues, and data rran­
agement queues -- to prevent ABEND frorr

30

being requested while ABEND is in progress.
ABEND removes the SIRB from the active RB
queue.

ABEND determines the amount of rrain
storage it will need and acquires the
storage either by using GETMAIN or by
overlaying reentrant code at the beginning
of the dynamic area.

ABEND determines if the abnormally ter­
rrinating routine has requested a dump. If
it has, ABEND searches the TIOT for a
SYSABEND ddname. If this entry is not
located, ABEND assembles pertinent informa­
tion and packs it in main storage for
eventual printing by the job managerr,ent
routines. This information is called an
indicative dump. If the SYSABEND entry was
located, ABEND opens a DCB and calls the
ABDUl'lP type 4 SVC routine. ABDUMP
assembles a full hex-formatted dump of the
TCB, psw, RBS, save areas, and all of main
storage. If Main Storage Hierarchy Support
is included in the system, ABDUMP
recognizes and dumps main storage in
hierarchies 0 and/or 1 associated with the
terminating job step. Storage limits are
obtained from the boundary box.

Upon completion of either the indicative
dump or ABDUMP, or if no durrp was taken,
ABEND attempts to CLOSE all data sets by
calling the data management CLOSE routines.
As in normal termination, all main storage
within the dynamic area is designated as a
free area. ABEND transfers control
(through an XCTL) to job management to
print the indicative dump if provided and
to initiate the next task.

Shared Direct Access Device ABEND

If shared DASD is included in the sys­
tem, ABEND performs additional processing.
This proceSSing is the same for normal end
and abnormal end. ABEND determines if the
task has released all the devices it re­
served. If not, ABEND releases them.

The sixth load of ABEND (module
IEAATM05, SVC name IGC0501C) examines the
TCB ENQ count. If the count is not zero,
the reserve counts in all UCBs representing
shared direct access devices are inspected.
If any UCB reserve count is not zero, it is
reset to zero and an EXCP macro instruction
is issued to release the device. When all
reserved devices have been released, ABEND
resets to zero the TCB ENQ count and the
major QCB queue origin in the CVT in
preparation for the next job step.

Normal termination is not converted to
abnormal termination even if the task did
not release its reserved devices during
termination.

The main storage supervision service
routines establish the availability of main
storage space and dynamically assign space
for program loading and work areas. The
main storage supervision service routines:

• Allocate main storage space dynamical­
ly.

• Release main storage space dynamically
on request.

• Maintain a record of all free areas of
main storage.

MAIN STORAGE SUPERVISION ROUTINES

Main storage supervision includes the
GETMAIN and FREEMAIN service routines. It
is resident within the nucleus, is not
reenter able, and is disabled for all mask­
able interruptions except machine check.

The GETMAIN service routine allocates
storage to a task according to its needs,
when a GETMAIN macro instruction is issued.

The FREEMAIN service routine releases
storage space on request, when a FREEMAIN
macro instruction is issued.

MAIN STORAGE SUPERVISION CONTROL FLOW

Main storage supervision control flow is
shown in Chart 07. The GETMAIN and FREE­
MAIN routines receive control from the SVC
FLIH and pass control through type 1 exit.
Register-type GETMAIN and FREEMAIN requests
have a separate entry point. An exception
occurs when an error condition is encoun­
tered. In this case, control passes to
ABTERM through a branch.

In a PCP system, there is only one
subpool, and it is unnumbered. All main
storage requests are satisfied from this
subpool. If subpool numbers are specified
in GETMAIN and FREEMAIN macro instructions,
they are ignored.

Main storage is divided into two areas,
the fixed area and the dynamic area. The
main storage supervisor controls only the
dynamic area.

If rBr1 2361 Core Storage and Main stor­
age Hierarchy Support for IBM 2361 Models 1
and 2 are included in the system, the
dynamic area is divided into two storage
areas, processor storage (hierarchy 0) and

CHAPTER 3: MAIN STORAGE SUPERVISION

IBM 2361 Core Storage (hierarchy 1). The
main storage supervisor allocates space
according to hierarchy in the upper (high
address) portion of a storage area for
routines requested by LOAD macro instruc­
tions and for data areas requested 1:y the
user. The main storage supervisor allo­
cates space according to hierarchy in lcwer
(low address) portion of a storage area to
the processing program and to routines
called through LINK, XCTL, and ATTACH macro
instructions.

If IBM 2361 Storage is not included in
the syst~m, the entire dynamic area is in
processor storage. Space is allocated in
the same manner as described in the preced­
ing paragraph except that all space is
allocated from processor storage.

Boundary Box

Allocation of space in the dynamic area
is controlled through use of a boundary box
which is addressed by TCB field TCBMSS.
The boundary box is initialized 1:y the
nucleus initialization program (see Appen­
dix B) and consists of three words.

• The first word of the toundary box
contains the address of the first ele­
ment of a free area queue for processor
storage.

• The second word contains the address of
the beginning of the dynamic area.

• The third word contains the address,
plus one byte, of the end of processor
storage.

If I-1ain storage Hierarchy support is
included in the system, the boundary box is
expanded to six words (see Figure 10). The
first byte of the expanded boundary box
contains a nln in bit 7 to indicate that
hierarchy support is included. The first
three words of the expanded boundary box
are used to control the allocation of
processor storage space (hierarchy 0).
These three words are the same as the
three-word boundary tox described above.

If IBM 2361 Core Storage is not included
in the system but Main Storage Hierarchy
Support is included, the last three words
of the expanded boundary box are set to
zero. If IBM 2361 Core Storage is included
in the system, the last three words (Words
4, 5, and 6) of the expanded boundary box
are used to control the allocation of this
storage space (hierarchy 1).

Chapter 3: Main Storage Supervision 31

-f------
I
I

D

r-----------------------,
I I
I Free Area I
I I
~-----------T-----------~ I

I
I
I

cit B I # Bytes I

I
Dynamic

Area

~-----------~-----------~
I I
I Allocated Area I
I I
~-----------------------~

(Hierarchy 0) I I
I
I

I Free Area I
I I
~-----------T-----------~ I

I
I
I

B I 0000 I # Bytes I

I

-,-----~
I
I
I
I
I
I
I
I

Fixed
Area

I
I
I
I
I

~-----------~-----------~
I I
I Allocated Area I
I I
~-----------------------~
I TCB + 24
~ r---------,
II TCBMSS I
I L-------T-J
I I Boundary

I t----~~~--,
I I t C I
I ~---------~
I I t A I
I ~---------~
I ltD I
I ~---------~
I I tEl
I ~---------~
I ltD I

I I ~---------~ I
I I I t F I I

_+______ + ________ ~=========~ ____ J
Processor Storage

Figure 10. Main Storage Organization

• The fourth word of the boundary
contains the address of the first
ment of a free area queue for IBM
Core Storage.

box
ele-
2361

• The fifth word contains the address of
the beginning of IBM 2361 Core Storage
space.

• The sixth word contains the address,
plus one byte, of the end of IBM 2361
Core Storage sFac€.

Free Area Queue

A free
area queue
together.
sor storage
hierarchy a

32

area queue is a series of free
elements which are chained

The free area queue for proces­
indicates the total amount of
space not being used at a given

F

r-----------------------,
I I
I I
I Allocated Area I
I I
I I
I I
~-----------------------~
I I
I I
I Free Area I
I I
I I
I I
~-----------T-----------~

E I t G I # Bytes I
~-----------~-----------~
I I
I I
I Allocated Area I
I I
I I
I I
~-----------------------~
I I
I I
I Free Area I
I I
I I
~-----------T-----------~

G I 0000 I # Bytes I
~-----------~-----------~
I I
I I
I I
I Allocated Area I
I I
I I
I I

D I I L _______________________ J

IBM 2361 Core Storage

Dynamic
Area

(Hierarchy 1>

time. The free area queue for IBM 2361
Core Storage indicates the total amount of
hierarchy 1 space not being used.

Free Area Queue Element

Each free area queue element (FQE) is a
double-word which represents a distinct
free area. The first word contains the
address of the next lower FQE on the queue.
The first word of the FQE at the lcwest
address in a storage area (processor stor­
age or IBM 2361 Core Storage) contains
zeros. The second word contains the length
of the free area (in bytes). The FQE is
always in the lowest eight bytes of each
free area (see Figure 10). Each FQE begins
and ends on a double word boundary;
requests for main storage space are always
rounded up to a double word boundary.

GETMAIN

When a GETMAIN is executed, the free
area queue is searched for space as large
or larger than that required. If found,
the space is allocated, and the amount used
is subtracted from the free area from which
it was removed. If space is not found and
the request was conditional, GETMAIN ends
by branching to type 1 exit. If the area
is not found and the request was uncondi­
tional, GETMAIN branches to ABTERM to
schedule the termination of the task.

FREEMAIN

When a FREEMAIN is executed, the area to
be freed is checked for any overlap with
existing free areas. If overlap exists, an
error has occurred and FREEMAIN branches to
ABTERM for the scheduling of an abnormal
termination of the task. otherwise, FREE­
MAIN combines the area to be freed with any
adjacent free area, by updating that area's
FQE. If there are nc adjacent free areas,
FREEMAIN creates an FQE for the newly freed
area and queues the FQE on the free area
queue. On completion, FREEMAIN branches to
type 1 exit.

Chapter 3: Main Storage Supervision 33

CHAPTER 4: CONTENTS SUPERVISION

Contents supervision service routines
record the identity, main storage location,
size, properties and users of routines
which, with the data they operate on, make
up tasks. Completed routines remain in
storage if they were originally brought in
by a LOAD macro instruction. contents
supervision service routines maintain two
lists (see the discussion of request block
queueing in the introduction to this manu­
al) of routines in the dynamic area:

• Active request block queue -- a list of
active routines given control by type
II, III, or IV linkage, excluding type
1 SVcs.

• Loaded proqram list
frequently-used routines
storage by a LOAD.

a list of
brought into

Each routine in these lists is repre­
sented by an RB that iwmediately precedes
the routine in main storage. Exceptions to
this are: the SIRE, which is permanently
in the nucleus; SVREs, which are always in
the upper end of main storage, away frorr
their associated routines; and "minors,"
which are REs placed on the loaded prograrr
list by the optional IDENTIFY macro
instruction and which represent routines
embedded in the processing program.

Contents supervision maintains the two
lists by ohaining the RBs for the routines.
Each list is addressed by the TCE.

CONTENTS SUPERVISION ROUTINES

Contents supervision is made up of the
following service routines: LINK, LOAD,
XCTL, IDENTIFY (optional>, DELETE, SYNCH,
and a common subroutine called FINCH.

LINK: This service routine passes control
from the routine that issued the LINK macro
instruction to another routine so that the
issuer regains control when the second
routine completes.

LOAD: This service routine brings a rou­
tine specified in the parameters of a LOAD
macro instruction into main storage and
inserts its FE on the loaded program list
with a use count of one. If the routine is
already on the list, the service routine
merely adds one to the use count, which
thus reflects the number of times a LOAD
has been issued for this routine minus the
number of times a DELETE has been issued
for it.

34

XCTL: This service routine passes control
from the routine issuing the XCTL rracro
instruction to a requested routine. When
the requested routine completes, contrel is
not returned to the issuer, which has been
removed from the active RB queue, but to
the routine which preceded the issuer of
the XCTL. The issuer of the XCTL is
removed from main storage if it was not
brought into main storage by a LOAD macro
instruction.

IDENTIFY: This service routine causes a
routine named by the issuer of the IDENTIFY
macro instruction to have a minor RB
created for it, and causes this RB to be
chained on the loaded program list. The RB
which is the result of the IDENTIFY is on
the LOAD list only for control purposes.
The RBs of these identified routines are
removed from the loaded program list and
the RB space is released whenever these
routines are deleted.

DELETE: This service routine decrerrents
the use count in the RB of a LOADed routine
named by the issuer of a DELETE macro
instruction. When the use count becomes
zero, DELETE removes the RE from the loaded
program list and frees the storage space
occupied by the routine. (Note: In sys­
tems which include the IDENTIFY macro
instruction, any minors associated with the
named routine are also removed by DELETE.)

SYNCH: This service routine creates,
initializes, and queues program request
blocks. System routines or processing pro­
grams use this routine to create PRBs for
segments of code which they designate by
placing an entry point address in register
15 and executing an SVC SYNCH instruction.
After the PRB is queued on the active
request block queue, SYNCH returns by
executing an SVC EXIT instruction.

FINCH: This service routine interfaces
with the data management BIDL routine, and
with program fetch (described in Chapter 5)
to retrieve routines from auxiliary stor­
age. Routines may be retrieved when a
LINK, LOAD, XCTL, or ATTACH macro instruc­
tion is issued, or when a non-resident SVC
routine or non-resident input/output super­
visor error routine is requested. After
the routines are loaded into main storage,
FINCH records information concerning their
attributes and main storage locations into
the appropriate contents supervision lists.

CONTENTS SUPERVISION CONTROL FLOW

As shown in Chart 08, the flow of
contents supervision is essentially the
flow of the individual service routines,
which receive control from interruption
supervision and pass control to their par­
ticular exit routine on completion. FINCH
is an exception in that it receives control
from LINK, LOAD, and XCTL, as well as frou
a number of other system routines including
ATTACH and the svc FLIH, and returns to
whatever routine requested its services.

The routines which service LINK, LOAD,
XCTL, and ATTACH macro instructions direct
program loading into hierarchies of main
storage if Main Storage Hierarchy Support
is included in the system. These routines,
upon entry from the SVC SLIH, extract the
hierarchy number from the parameter list
and, if a co~y of the requested program
must be loaded, pass the hierarchy number
(0 or 1) to the FINCH service routine. The
GETMAIN request issued by FINCH then allo­
cates storage in the specified hierarchy.

LINK

The LINK service routine is entered by
the SVC SLIH in response to a LINK macro
instruction.

LINK searches the loaded program list
for the RB of the requested routine. If it
is found, and it is not already on the
active RB queue, LINK prepares the RB for
dispatching. If the routine is not found
or if it is active, LINK enters FINCH.
FINCH constructs an RB for the requested
routine and places both the RB and its
routine in the lower end of the dynamic
area.

On return from FINCH, LINK prepares the
RB for dispatching by:

• Initializing LINK's SVRB so that
register loading causes the requested
routine to execute EXIT when it issues
the RETURN macro instruction.

• Flagging the requested routine's RB to
indicate that it is active.

• Placing the requested routine's RB on
the active RB queue between the RB for
LINK and the RB for the issuer of the
request, to ensure that the requested
routine is entered when LINK issues
EXIT.

• Issuing the SVC EXIT instruction.

LOAD

The LOAD service routine is entered by
the svc SLIH when a LOAD macro instruction
is issued. LOAD searches the loaded pro­
gram list for the RB of the requested
routine, and if it finds it, increments the
use count and passes the requested rou­
tine's entry point to the issuer in regis­
ter O. LOAD branches to the terminal
portion of LINK that issues the SVC EXIT
instruction.

If the requested routine is not found on
the loaded program list, LOAD branches to
FINCH to load the routine into storage. On
return from FINCH, LOAD initializes the
requested routine's RB and places it on the
loaded program list, sets the RB's use
count to one and branches to LINK to issue
the SVC EXIT instruction.

If the resident access method (RAM)
option was selected during system genera­
tion and the name of the requested routine
is prefixed by IGG019, LOAD searches the
RAM system load list first. If the RB of
the routine is found there, the use count
is not incremented and the entry ~oint of
the routine is passed to the user in
register o. If the RB of the routine is
not found in the system load list, LOAD
searches the loaded program list and pro­
ceeds as previously described.

XCTL

The XCTL service routine is entered cy
the svc SLIH when an XCTL macro instruction
is issued.

If the XCTL macro instruction was issued
by an SVC routine o~erating in the SVC
transient area, the XCTL service routine
branches to FINCH to locate the routine on
the svc library and bring it into the
transient area. XCTL branches to that part
of LINK that completes the initialization
of the RB and executes an SVC EXIT
instruction.

If the XCTL macro instruction was not
issued by a transient SVC routine, XCTL
dequeues the issuer's RB and its minors
from the active RB queue. The routine
which issued XCTL and its RB are removed
from main storage (unless the routine was
LOADed).

If the requested routine is on the
loaded program list and is not active, XCTL
branches to LINK to:

• set the active bit in the RB for the
requested routine.

Chapter 4: Contents Supervision 35

• Queue the RB on the active RB queue.

• Issue an SVC EXIT instruction.

If the RB of the requested routine was
not found inactive on the loaded program
list, XCTL branches to FINCH to bring the
routine into main storage. On return from
FINCH, XCTL initializes the routine in the
same manner as if its RB had been found
inactive on the loaded program list.

If the resident type 3 and 4 SVC routine
option was selected during system genera­
tion and an XCTL macro instruction was
issued by a type 3 or 4 routine, the XCTL
routine checks the RSVC system load list to
determine if the requested routine is resi­
dent or requires loading.

IDENTIFY

The IDENTIFY service routine is entered
by the svc SLIH in response to the issuance
of an IDENTIFY macro instruction which is
an option in the fixed-task environment.

IDENTIFY builds and initializes a minor
request block to describe a routine speci­
fied in the parameters of the IDENTIFY
macro instruction, and chains this minor to
the loaded program list and to the RB of
the routine which contains the identified
routine. IDENTIFY returns to the issuer by
issuing an SVC EXIT instruction.

DELETE

The DELETE service routine is entered by
the SVC FLIH when a DELETE macro instruc­
tion is issued. The DELETE routine decre­
ments the use count in the RB of the
routine specified in the parameters of the
DELETE macro instruction. If the use count
reaches zero, DELETE dequeues the routine
from the loaded program list and issues a
FREEMAIN macro instruction to release the
storage occupied by the specified routine
and its RB. On return from FREEMAIN,
DELETE repeats the deleting process for any
minors belonging to the specified routine.
DELETE returns by branching to the type 1
SVC exit.

36

If the RB of a routine is found in the
resident access method (RAM) system load
list, the use count is not decremented by
DELETE and the FREEMAIN macro instruction
is not issued.

SYNCH

The SYNCH service routine is entered by
the svc SLIH when a SYNCH macro instruction
is executed. SYNCH uses GETMAIN to obtain
32 bytes of main storage from the lower end
of the dynamic area for the creation of a
PRB. The PSW in the PRB is initialized by
SYNCH to address the location specified in
register 15 by the issuer of the rracro
instruction. SYNCH sets the PSW completely
enabled in problem program mode, with the
protection key recorded in the task control
block. After the PRB is created and
initialized, SYNCH queues it on the active
request block queue below the SVRB for
SYNCH, and returns by issuing an SVC EXIT
instruction.

FINCH

The FINCH service routine is a corrmen
subroutine. It is entered by a branch from
seven other system routines and it returns
to them by a branch. The seven service
routines which branch to FINCH are:

• ATTACH • SVC SLIH

• LINK • EXIT EFFECTOR

• LOAD • EXIT

• XCTL

FINCH uses the data management BLDL
routine to locate a named routine en an
external storage device. Using the infor­
mation provided by BLDL, FINCH initializes
the program fetch parameters and uses the
program fetch routine to bring the speci­
fied routine inte main storage. FINCH
allows for necessary RBs when issuing
GETMAIN, and initializes them with the RB
type and the size of the storage space they
and their routines occupy.

Program fetch, a part of the resident
nucleus, places into ma1n storage load
modules obtained from the system library or
any other library organized as a parti­
tioned data set. Program fetch is reenter­
atle~ that is, it can be used concurrently
by more than one task. The module name of
program fetch is IEWFTMIN.

Prcgram Controlled Interrupt (PCI) fetch
is an optional program fetch module that
can te used in place of IEWFTMIN. The
module name of PCI fetch is IEWFTPCI.
Either IEWFTMIN or IEWFTPCI is selected
during system generation. PCI fetch im­
proves performance on some System/360
models by requiring only one revolution of
the disk to place the contents of one track
into main storage.- The differences between
standard program fetch (Chart 09) and PCI
fetch (Charts 09 and 10) are pointed out in
notes throughout the chapter.

Program fetch has two entry points.
contents supervision passes control to pro­
gram fetch ty branching to IEWMSEPT. over­
lay supervision passes control to program
fetch by branching to IEWFBOSV.

A load module is placed into main
storage using block loading, which places
an entire load module into a contiguous
main storage area. IEWFTMIN and IEWFTPCI
operate in block loading mode only. Stan­
dard program fetch requires one revolution
of the disk for each RLD record read.
Standard fetch waits for channel end so
that it can begin any necessary relocation.
When it has completed relocation, standard
program fetch issues another EXCP to read
the next RLD and/or text record.

Note: PCI fetch reads in the RLD and/or
text record and then, rather than waiting
for channel end to occur, it uses a PCI
appendage to allow the channel program to
read the next RLD and/or text record into
another tuffer. The PCI appendage gives
control to the relocation subroutine which
performs any relocation that is required on
the contents of the previous buffer while
the next buffer is being filled. This
improved performance aSSUIr,es:

• That a buffer is always availatle for
RLD records to be read into.

• That no errors
execution.

occur during I/O

• That no cylinders are crossed while the
program is being fetched.

CHAPTER 5: PROGRAM FETCH

• That the speed of the CPU allows the
PCI appendage to change a CCW from a
NOP to a TIC to the next channel
program before the channel picks up
that CCW.

PROGRAM FETCH FUNCTIONS

Program fetch performs the following
specific fUnctions:

• Initialization. Performs initializa­
tion procedures to prepare for the
loading of a module.

• Loading.
records of
storage.

Reads text records and RLD
a load module into main

• Relocation. Adjusts values of address
constants to reflect the relocation of
a module that has been loaded into Rain
storage.

• Termination. Performs termination pro­
cedures after a Rodule has been loaded
into main storage.

PROGRAM FETCH CONTROL FLOW

Program fetch receives control from con­
tents supervision when either a LINK,
ATTACH, LOAD, or XCTL macro instructicn is
issued and a usable copy of the module
specified is not in main storage. When
contents superV1S1on requests a tlock
module, program fetch loads the entire
module. A load module with the scatter
attribute is block loaded. When an overlay
module is requested, only the root segRent
is loaded.

Program fetch receives control from
overlay supervision when a segment of an
overlay program specifies another segment
that is not in main storage either by a
branch or by issuing a SEGWT or CALL nacro
instruction. After receiving control from
overlay supervision, program fetch lcads
the requested segment.

If Main Storage Hierarchy Support is
included in the system, the loading of
relocatable units of a program can be
directed into hierarchy 0 or hierarchy 1 or
into both hierarchies by the use of the
linkage editor hierarchy loading attritute
(HIARCHY=). The loading of overlay struc-

Chapter 5: Program Fetch 37

ture programs Can be directed into either
hierarchy, but load segments of the same
overlay program cannot be loaded into dif­
ferent hierarchies. When no hierarchy is
specified, the overlay structure exists in
hierarchy O.

The initialization procedures shown in
chart 09 are performed each time program
fetch begins execution. control then
passes to the loading routine, which reads
in the module. Relocatable address con­
stants embedded in text records are
adjusted by the relocation routine. Con­
trol passes tetween the loading routine and
the relocation routine until the entire
segment or module is loaded and relocated.
Termination procedures are then performed
and control is returned to the caller.

Note: PCI fetch performs relocation asyn­
chronously with its input/output execution.

Byte
r--------------------------------------,

01 CHPGl -Channel Program 1
1 (7 double words) 1

1 r--------T--------~
321 1 ECB 1 lOB 1

1 1 (1 word) 1 1
~--------------------~--------+--------~

641 lOB -Input/Output Block 1 IOBSKBUFI
I (8 words) 1 lOB Seek 1
~---------T-------------------+--------~

961 Buffer I SEEKBUF -Fetch Seekl 1
1 (2 words) 1 Buffer (3 words) 1 1
~---------L-------------------J r-----~

1281 REGSAVE -Register Save Area 1
1 (10 words) 1
~--------------------------------J

1601
1
I

1921
1
I

2241 RLDBUF
1

Relocation Dictionary Buffer
256

(64 words)

288

320

352

384
______________________________________ J

Figure 11. Program Fetch Work Area

38

r----------T------------------------------,
1 IRelocation factor for module 1

1 I 1
t----------~--------------T---------------~
I 1 Concatenation I
1 I Number I
t-------------------------~---------------~
ITTRO - relative (to teginning of data I
Iset) disk address of segment 1 I
t---~
ITTRO - relative (to teginning of data I
Iset) disk address of segment 2 I l ___ J

r---,
ITTRO - relative (to teginning of data I
Iset) disk address of segment N I l ___ J

Concatenation Numter - This a value
specifying this data set's sequential
position within a group of concate­
nated data sets.

Figure 12. Note List (in Main Storage)

INITIALIZATION

contents supervision supplies program
fetch with the following parameters (see
program listing for contents of general
registers and fetch parameter list):

• Main storage address of applicable par­
titioned organization directory record.

• Ivlain storage address of an opened data
control block (teB) to te used while
loading the module.

• Main storage address of the work area
to be used (see Figure 11).

• Main storage address of area into which
NOTE list is to be read for overlay
programs (see Figure 12).

• Main storage address at which to begin
loading the module.

• Return address in general register 14.

Overlay supervision supplies program
fetch with the following parameters:

• Main storage address of the data con­
trol block (DCB) previously used to
read in the root segment.

• Main storage address of the note list
(loaded before the root segment).

• Main storage address of a work area for
use by program fetch.

Note: The work area for PCI fetch is
within the PCI program.

input/output block (lOB), an event control
block (ECB), and a channel program (CCW
list) in the specified work area. The
channel program is used to read in the
program, and if necessary, the note list
containing the relative disk addresses of
the overlay module's segments. Figure 13
shows the relationship of the blocks and
tables used by program fetch to load block
and overlay modules.

• Segment number of the requested segment
multiplied by 4.

• Return address in general register 14.

After receiving control, program fetch
uses the parameters supplied to build an

r------------------,
r-------------------~ DCB (for library I
I r--+j containing program I
I I I being loaded) I I r-------, I L __________________ J

r------------, I ~ __ J

I I 1 lOB 1 r------------------,
1 Parameter ~ _______ J ~------+j ECB 1
1 ~---, ~--, L __________________ J

1 List ~-, 1 L _______ J 1
I 1 1 1 1 r------------------,
L ____________ J 1 1 L __ +j Channel Programs 1

1 1 L __________________ J

1 1
1 1
1 1 r-------------, r---------------,
I L-__ ~ PDS Directory ~---------, I•........ I
1 I Record ~------, 1 I·Direct-Access. I
1 I ~--, 1 I I·· .Device •••••• I
1 I I I I I 1···············1 I L _____________ J 1 I L_~---------------~

Block Modules 1 1 I 1 Program I Block Module
1 I I ~---------------_t

I 1 1 1···············1
I I 1 1···············1 I I I L _______________ J

I I 1
-----------------------+-----------------------+---+-------------------------------------

Overlay Modules

r------------------,
1 Legend 1
I specifies I
I----~ a pointer \ L __________________ J

1 I 1
I I I r---------------,
I I I 1···············1
1 1 1 I·Direct-Access·1
I I I I···· .Device····1
1 I I 1···············1
I I L----~---------------_t
I I I SEGTAB I
I I 1-------- I Overlay Module
1 I I Segment 1 I
I I ~---------------_t
I r---------, I I Segment 2 I
L ______ -+j I ~---------------~

1 Note 1 1 Segment 3 1
1 I ~---------------_t
1 List I 1 Segment 4 I
I L--------~---------------_t
I I Note list 1 L _________ J ~---------------_t

I ••••••••••••••• 1
1 ••••••••••••••• 1
I I
1 ••••••••••••••• I
1 •••• ' ••••••••••• I
I ••••••••••••••• 1 L _______________ J

Figure 13. Blocks and Tables Used by Program Fetch

Chapter 5: Progran. Fetch 39

r----------, r---------, r---------, r----------, r---------, r------------, r----------,
1 Record 1 1 ,Record 2 , IRecord 3 1 1 Record 4 1 IRecord 5 1 1 Record 6 1 1 Record 7 ,
1 Control, 1 Text 1 1 Control 1 1 Text 1 1 RLD 'I Control-RLD-I 1 Text 1
1 1 1 1 , 1 1 1 I 1 1 End-of-seg. 1 1 1
1 20 bytes 1 1500 bytes 1 120 bytes 1 11024 bytes 1 1260 bytes 1 1 200 bytes 1 1 15 tytes 1 L __________ J L _________ J L _________ J L __________ J L _________ J L ____________ J L __________ J

• Figure 14. Typical Load Module (Logical FarHat on Direct-Access Device)

Note: PCI fetch builds three channel pro­
grams in the PCI fetch work area. The work
area also contains three relocation dic­
tionary buffers.

These records are of variatle length.
Their formats are shown in Appendix D.

After control is received from contents
supervision, program fetch obtains the
length and the relative disk address of a
module's first text record from the parti­
tioned organization directory record (see
Appendix D). Subsequent text records are
read using the length given in the control
record preceding each text record. One or
more records containing RLD information
will follow a text record that has emtedded
relocatable address constants. Program
fetch uses the RLD information to find and
adjust the values of the address constants.

LOADING

A load module (Figure 14) consists of:

1. Control records,

2. Text records,

3. RLD records,

4. Control and RLD records.
When loading a block or overlay module,

program fetch alters the mode of its chan-

r------------------------------T-------------------T------------------------------------,
, INumber of Records 1 Source (if any) of Record Length I
I Condition IRead With Each I and Relative Disk Address (TTR), I
1 IEXCP Issued I if not reading sequentially I
r------------------------------t--------T----------t------------------------------------~
1 1 Standard 1 PCI I I
I I Fetch I Fetch I I
I Normal first EXCP for all r--------t----------~ Partitioned Organization Directory I
, modules including root 2 I reads Record I
, segment of overlay modules lall I
I I records I
I I connected I
I Normal Mode 2 Iwith Control record provides record I
I Ithe length of following text record I
I load I
I First EXCP for a segement 1 module NOTE list provides relative disk I
I address (TTR)

EXCP for a NOTE list

EXCP to read a control
and/or RLD record that pre­
viously caused an incorrect
length input/cutput error

Previous record was RLD only
(did not contain control
inforrr.ation)

EXCP for a module that con­
sists of one text record and
no RLD reccrds

Last record of the module is
a text record

1

1

1

1

1

1 Partitioned Organization Directory
Record

nct appli- None
cable for
PCl

not appli- None
Icable for
IPCI
I
I
11
I ,
Inot appli­
Icable for
IPCl

Partitioned Organization Directory
Record

Control record provides record
length of following text record.

______________________________ ~ ________ L __________ ~ ___________________________________ _

Figure 15. Conditions Affecting Channel Prcgram Mode

40

nel ~rogram according to the type and
sequence of records contained in the module
(see Figure 15). The normal sequence of
records in a module is: control informa­
tion - text record - control information -
text record. Two records are read at a
time as long as the normal sequence -- a
text record followed by control information
-- is encountered. When the second of the
two records read in the normal mode does
not contain control information, program
fetch alters the mode of the channel pro­
gram so that a subsequent EXCP macro
instruction causes a single record to be
read. Each record read singly is checked
for control information. If present, pro­
gram fetch restores its channel program to
the normal mode. Text records are read
into their assigned main storage location~
RLD records are read into the RLD buffer.

As program fetch loads a module, it
reads the count record preceding each data
record into the fetch seek buffer. The
channel program's search command specifies
the last count record read. This is the
count record that precedes the last data
record that was read. When the count
record specified by the search command is
found, a subsequent read count, key and
data command will result in skipping the
data record that followed the count record
and will begin reading at the next count
record, as shown in Figure 16.

Note: For PCI fetch, the search command
specifies a count record and the subsequent
read begins with the data that follows that
count record. See Figure 16.

Program fetch causes a single record to
be read by turning off the command chaining
bit in the first read CCW of the channel

Note: For PCl I
fetch, a searchl
for this count I
record I

~

count Data count

I will result in a
I subsequent read
I of data starting
I here.
~

Data Count Data

program when either of the following condi­
tions occur:

• The last text record of a module is to
be read (indicated by the setting of
the end-of-segment bit in the preceding
control record).

• A module to be loaded consists of a
Single text record without any RLD
information following it (indicated by
the module'S attributes in the PDS
directory) •

Overlay Modules

When an overlay module is loaded, its
NOTE list is first read into main storage.
The root segment is then read into nain
storage using normal block loading
procedures.

While an overlay program is teing
executed, the NOTE list which contains the
main storage address of the SEGTAB and the
relative disk addresses of the module's
segments, remains in nain storage.

After the root segment has
the SEGTAB is initialized.
inserts, into SEGTAB, the
address of data control block
NOTE list, and if reqUired,
TRAN indicator.

been loaded
Program fetch
main storage
(DCB) and the
sets the TES-

To read in a segment other than the root
segment, program fetch uses a relative disk
address found in the NOTE list to read the
first control record of the segment. The
information in the control record is used
to begin reading in the segment in the
normal mode.

Count Data Count Data count Data
---T-T-------T-T--T-T-------~-T--T-T-------T-T--T-T--------T~--T-T-------T-T--T-T------

I
I I Control I I I I Text I I I I Control I I I I Text I I I I cantrall I I I Text
I

---~-~------~I~--~-~--------~-~f-~-~-------~I~,-~-~---_____ L-~ __ ~_~ _______ ~_~ __ ~_~ _____ _

I I I I
L _________________ ~------------J I
Previous EXCP I I

I I
A search for will result in a
this count subsequent read
record count, key and data

starting here.

Figure 16. Typical Load Module (Physical Format on Direct-Access Device)

Chapter 5: Program Fetch 41

End-of-Extent Appendage

A load module may reside in one or more
extents on a direct-access device. The
boundaries of these extents are specified
in the data extent block (DEB) for the
library containing the module being loaded.
When an EXCP macro instruction is issued
that results in crossing one of the extent
boundaries within which a portion of the
module being loaded resides, the input/
output supervisor passes control to program
fetch's end-of-extent appendage. The
appendage acquires the beginning extent
boundary for the next portion of the load
module froID the DEB, places it into the
unit control block (UCB), and returns con­
trol to the input/output supervisor.

Input/Output Errors

All
the I/O
errors
or RLD

input/output errors are handled by
supervisor, except incorrect length

occurring while reading control and/
records.

Note: For PCI fetch, all input/output
errors are handled by the I/O supervisor.

Normally, an incorrect length indication
is expected when reading control and/or RLD
records, since they are variable length and
their specific length is not known in
advance. After reading such a record with
a maximum possible count (256 bytes), pro­
gram fetch examines the content of the
record to check that what was read was of
correct length. If this check fails, pro­
gram fetch makes one more attempt to read
th~ record, this time with the exact
expected count. If the attempt to reread
fails, control is given to the caller and
an error code is passed.

RELOCATION (ADJUSTING ADDRESS CONSTANTS)

Program
by adding
factor to
value that

42

fetch adjusts address constants
(or subtracting) a relocation
(or from) the address constant's
is embedded in the load module.

When a module is block loaded, its
relocation factor is the difference between
its linkage editor assigned address, which
is always zero, and the first byte of ~ain
storage into which the module is to be
loaded. For example, assume a module is to
be loaded into main storage beginning at
address 4000. If the RLD flag bit is
positive a relocation factor of +4000 is
added to the relocatable address constant.
If, however, the RLD flag bit is negative,
the relocation factor is subtracted from
the address constant (see Appendix D for
RLD entry format). The linkage editor
assigned address of every relocatable
address constant is given by the relocation
dicticnary (RLD).

Address constants in the root segment of
an overlay module are adjusted in the same
manner as those in a block module. The
root segment's relocation is used to adjust
the address constants of all segments of
the module since an overlay module is
essentially block loaded. The relocation
factor is stored in the NOTE list by
program fetch and is available throughout
the execution of the overlay module.

TERMINATION

When a block module or the root seg~ent
of an overlay module has been loaded,
program fetch computes the relocated entry
point of the module and places it in the
fetch (parameter) list. When a root seg­
ment of an overlay module is loaded, pro­
gram fetch also inserts the main storage
address of the data control block (DCB) and
the NOTE list into the segment table
(SEGTAB).

To specify a successful or unsuccessful
loading, program fetch passes the appropri­
ate termination code to its caller. Con­
trol is then returned to the caller via a
branch to the address in the link/return
register.

The overlay supervision service routines
control the loading of overlay ~rogram
segments and assist the flow of control
between the segments of an overlay program.
While performing these fUnctions, these
routines place data into and use data from
the segment table (SEGTAB) and the entry
tables (ENTABs).

Because the segment and entry tables are
part of each overlay program, the overlay
supervisor is reenterable and its services
can be used concurrently by many overlay
programs.

During execution, an overlay program
issues requests for segments. The requests
can be explicit via a SEGLD or SEGWT macro
instruction or implicit via a branch that
is routed through an ENTAB. In either
case, the overlay supervisor receives con­
trol from the SVC handler and checks the
SEGTAB to determine whether the requested
segment is in main storage. If not, the
overlay supervisor requests program fetch
to load the segment. When this segment is
part of an overlay program that is being
tested, the overlay supervisor also passes
control to the TESTRAN interpreter.

Program fetch
er each return
supervisor after
performed.

and the TESTRAN interpret­
control to the overlay

their fUnctions have been

SEGLD is not supported in this configu­
ration; a SEGLD request is treated as a NOP
instruction.

TABLES USED BY OVERLAY SUPERVISION

The segment table (SEGTAB) and the entry
tables (ENTABs) that contain the data used
by the overlay supervisor are created by
the linkage editor from information in the
relocation dictionary (RLD) and the user's
control statements.

Figure 17 shows the SEGTAB and ENTABs in
a typical single region overlay structure;
the ENTAB and SEGTAB formats are given in
Appendix F.

USE OF SEGMENT TABLE

The segment table (SEGTAB) contains data
that describes the structure and status of
an overlay module, and is a directory for
the segments of that module. It contains

CHAPTER 6: OVERLAY SUPERVISION

r------,
I SEGTAB I
1- I
I I
I I
I I
I TEXT I
I IRoot Segment
I I (Seg 1)

I I
1- I
IENTAB I

r------T----~------~-----T------,
II I I I II 11111 I II I III II II III I I I II II
~------+-----------------t------~
I I I I
I I I I
I I I I
I TEXT I I TEXT I
I I Seg 2 Seg 5 I I
I I I I
1- I I I
IENTAB I I I

r------T--~------~--T------, I I
1111111111111111111111111111 I I
~------+------------+------~ I I
I I I I
I I I I
I TEXT I TEXT I I
I I Seg 3 Seg 4 I I
I I I I
I I I I
I I I I L ______ J I I

I I
I I L ______ J

Figure 17. Single-Region Overlay Structure

both fixed and variable information. The
fixed information includes:

• TEST indicator. This indicator is set
by program fetch if the partitioned
organization directory record indicates
that the ~rogram is being tested under
TESTRAN.

• Last segment number of each region.
This value defines the segment that
ends a region and is used to determine
the region that contains a particular
segment.

• Previous segment number of each segment
in the module. The overlay supervisor
uses this field to determine the addi-

Chapter 6: Overlay supervision 43

tional segments that must be
with the requested segment.
additional segments are those
path of the requested segment.)

loaded
(These

in the

The variable information includes:

• Pointers. These pointers are addresses
of the NOTE list and DeB.

• Highest number segment of each re~i~n
in main storage. This value is ~n~­
tialized to 1 for the first region by
the linkage editor.

• status indicator for each segment. The
overlay supervisor sets a status indi­
cator for each segment to indicate
either that the segment is not in main
storage, that the segment is being
loaded into main storage, or that the
segment is present in main storage.

For more information about the SEGTAB,
see Appendix F.

USE OF ENTRY TAELES

The entry tables (ENTABs) assist in
passing control between the overlay super­
visor and an overlay program. They handle
downward branches in an overlay program,
that is, the branches to segments lower in
the path.

When the overlay program executes an
upward branch, the overlay supervisor is
not entered, and the ENTABs and SEGTAB are
not used. An upward branch is direct
because segments in the path are always in
main storage (Figure 18).

Branching to a Segment Not in Main storage

When an overlay program branches to a
segment not in main storage, control is
passed to the applicable ENTAB (step A of
Figure 19). The branch instruction in the
ENTAB passes control to an svc instruction
contained in the first field of the last
ENTAB entry (step B). The SVC instruction
causes an SVC interruption, and passes
control to the SVC handler and then to the
overlay supervisor (step C). The overlay
supervisor uses a pointer in general
register 15 to obtain the information
required to:

44

• Determine the number of the requested
segment from the ENTAB.

• Determine the status of the requested
segment from the SEGTAB.

• Pass control to the requested segrrent
at the entry point specified by the
address of the entry pOint field in the
ENTAB.

After the segment is loaded, control is
returned to the second field of the last
ENTAB entry, the instruction following the
svc (step D). When the load and branch
instructions have been executed, control is
passed to the correct entry paint.

r-------------------------------------,
I I
I SEGTAB I
I I L _____________________________________ J

R r-------------------------------------, o SEG1 CSECT
o ENTRY EASY
T

S
E
G

L
BR

15,ADCON1
15

r--> EASY SR 1,1
I
I
I
I
I
I
I
I
I

ADCON1 DC V(FOX)

r-------T-------T-------T-------------,
I B DISP I ADDRESS I SEG NO. I I
1(15,0) lof FOX lof FOX I I E L _______ ~ _______ i _______ i _____________ J

N
T
A

B r------T--------------T------T---T----'
I SVC 451 L 15,4 (0,15) I BR 15 I I I
I I I I I I L ______ ~ ______________ i ______ i ___ i ____ J

r------------------------------,
I SEG 3 CSECT
I
I
I
I L

----------+------------BR
I
I
I
I ADCON2
I
I

DC

15,ADCON2
15

V(EASY)

L _____________________________ _

Figure 18. Overlay Program Upward Branch

r

r---------------------------~--------------------------------,
I I
I SEGTAB I
I I L __ J

R r--, o I SEG1 CSECT I
o I ENTRY EASY I
TIL 15,ADCONl 1

......... I BR 15 I
S 1 1
E I I
G 1 EASY SR 1,1 I

Step All
1 ADCON1 DC V(FOX) I L __ J

r---------------T--------------T-------T---------------------,
•••••.... ~ B DISP(15,0) 1 Address of ISeg.no·1 I

1 I FOX I of FOX 1 I E L _______________ ~ ______________ ~ _______ ~ _____________________ J

N
T ..• step B ••••
A

B r-~y----T--------------T-------T-------T---------------------,
..... Step C I SVC 451L 15,4(0,15) I BR 15 1 IAddress of SEGTAB I

V
r----------,
I Overlay 1 •••••... Step
I supervisor I
L----of-----J

I

r----y-----,
I Program I
I Fetch I L __________ J

SEG2 CSECT
ENTRY

,
FOX I

L _______ ~. _____________ ~ _______ ~ _______ ~ _____________________ J

D ••••••••••

r-------------------------------------,
I SEG3 CSECT I
I I
1 1

Step E I L 15,ADCON2 I
I BR 15 I
I I
I I
1 ADCON2 DC V (EASY) I L _____________________________________ J

FOX AR 1,2 ~ XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
X X
X ••••• ~ Shows control flow X
X X

L _ _ _ _ _ _ _ _ _ _ J
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Figure 19. Branch to Segment not in Main Storage

Branching to a Segment in Main storage

When a segment is loaded into main
storage, because of an implicit call (a
branch through an ENTAB), the displacement
(DISP) field in the ENTAB entry through
which the branch was routed is increased by
2 (Figure 20). When the overlay prograIri
executes another branch to this ENTAB
entry, the SVC instruction is bypassed, and
contrel is given to the second field of the
last ENTAB entry. Execution of the

instruction in this field causes general
register 15 to be loaded with the main
storage address assigned to the indicated
symbol. A branch to that location is then
executed.

A caller is an ENTAB entry that assisted
in routing a branch from a segment to an
entry point in a segment lower in the path.
ENTAB entries that have been modified to
bypass the SVC instruction are chained
together in a caller chain (Figure 21).

Chapter 6: Overlay Supervision 45

r--,
I I
I SEGTAB I
I I L __ J

r--,
R
o
o
T

SEG1 CSECT I
ENTRY EASY I

S
E
G EASY

L
BR

SR

15,ADCON1
15

1,1

I
I
I
I
I
I
I
I

ADCON1 DC V(FOX) I __ J

r---------------T--------------T-------T---------------------,
•••••• ~ B DISP(15,O) I Address of ISeg.no·1 I

I I FOX I of FOX I I
E
N
T
A
B

L _______________ ~ ______________ ~ _______ ~ _____________________ J

r-------T-y------------T-------T-------T---------------------,
I SVC 451L 15,4(0,15) I BR 15 I IAddress of SEGTAB I L _______ ~ ______________ ~ _______ ~ _______ ~ _____________________ J

r----------,
I Overlay I
I Supervisor I
L __________ J

r--------------------,
ISEG2 CSECT I
I ENTRY FOX I
I I
I FOX SR 3, 4 ~ ••••••••••••••••
I I
I I
I I L ____________________ J

Figure 20. Branch to Segment in Main Storage

These entries are chained only if the
called and calling segments are located in
the same region. Chaining is accomplished
by placing a pointer to (address of) the
modified ENTAB entry into the caller field
of the SEGTAB when the segment is brought
into main storage. If this segment is
requested again, the contents of the SEGTAB
caller field (a pointer to a previous
caller) is placed into the previous caller
field of the referred to ENTAB entry, and a
pointer to this ENTAB entry is placed in
the caller field of the SEGTAB. In this
way, a chain is created that begins at the
SEGTAB entry and points to all the ENTAB
entries (in the sarr,e region) that were
modified (+2) to bypass the SVC 45 instruc­
tion. When the segment is to te overlayed,
the caller chain is used to reset all of
the modified ENTAB entries in the chain.

46

OVERLAY SUPERVISION ROUTINES

Overlay supervision is composed of a
resident module called overlay supervisor 1
and either of two non-resident modules
selected during system generation called
overlay supervisor 2.

The module name of overlay supervisor 1
is IEWSVOVRi the module name of overlay
supervisor 2 is IEWSYOVR for the tasic
synchronous module or IEWSXOVR for the
basic synchronous module with optional
SEGWT checking. To pass control to either
version of overlay supervisor 2, overlay
supervisor 1 issues a LINK macro instruc­
tion that specifies IEWSZOVR, which is the
rrember name of the selected module in the
LINKLIB.

OVERLAY SUPERVISION CONTROL FLOW

The resident module has two entry
points: IGC037 and IGC045. The SVC han­
dler passes control to IGC037 as a result
of an SVC 37 instruction (SEGWT macro
instruction), or to IGC045 as a result of
an SVC 45 instruction (an intersegment
branch that is routed through an ENTAB).
An SVC 37 instruction with zero in general
register 0 specifies a SEGLD macro instruc­
tion, whereas a one in general register 0
specifies a SEGWT macro instruction.
(SEGLD is treated as a NOP in a single-task
environment.) Chart 11 shows overlay
supervisor control flow.

Overlay supervisor 1 is permanently
resident in the nucleus of the operating
system. It performs the first portion of
initialization and then links to overlay
supervisor 2. Wheri control is returned to
overlay supervisor 1, it performs the
remaining termination procedures and issues
an SVC EXIT instruction.

When a requested program is an overlay
program, contents supervision issues a LOAD
macro instruction to bring overlay supervi­
sor 2 into main storage. Overlay supervi-

ENTAB - SegIl'ent N
r------T------T-------------,
I I I I

sor 2 remains in main storage for the
duration of the task that required it.
When given control by overlay supervisor 1,
overlay supervisor 2 performs the rereaining
initialization procedures, loads the
requested segments, updates the segreent
table (SEGTAB) and entry tables (ENTABS),
performs some termination procedures, and
then returns control to overlay supervisor
1.

INITIALIZATION

During linkage editor processing, if the
address oonstants of a segment are resolved
to an ENTAB, the number of the segment is
placed in the high-order byte of the
address constants. The V-type address con­
stants that are not resolved to an ENTAB
contain a zero in their high-order bytes.
The address constants can be the result of
an expansion of a SEGLD, SEGWT, or CALL
macro instruction, or the result of the
user creating an address constant for use
with a branch instruction. If a SEGLD or
SEGWT request is received and the high­
order byte of the V-type address constant
is zero, the request is treated as a NOP.

First
Caller of
Segment 2

I +2 I I 0 1+-------,

Third
Caller

Second
Caller

Fourth
Caller

Figure 21.

I I I I I
I I I I I
t------+------+-------------~ I
I I I I I
I I I I I
t------+------t-------------~ I
I I I I I SEGTAB
I I I I I r-----------------------------------,
t------+------+-------------~ I I I
I +2 I I Address \+----, I
I I I t--, I I
t------+------+-------------~ I I I
I I I I I I I
I I I I I I I I I
t------+------+-------------~ I I I ~--T--------------------T----------~
I +2 I I Address I+-J I I I I I I
I I I t-----t--J I 0 I I I
t------+------t-------------~ I I I I I
I +2 I I Address t-----J ~---t--------------------+----------~
I I I \+------------~ I Address of last I
L ______ L ______ L _____________ J I 1 I caller of segment I

I I 2 I I
t---t--------------------+----------~
I I I I
I 1 I I I
I I I I L ___ L ____________________ L __________ J

Chaining of ENTAB Entries Used to Branch to a Segment

Chapter 6: Overlay Supervision 47

The overlay supervisor obtains the seg­
ment number of the requested segment from
the "to segment number" field in the ENTAB.
The overlay supervisor obtains the address
of the SEGTAB from the last entry in the
ENTAB, and checks the SEGTAB to determine
the segment's status and relationship to
the overlay structure.

The basic synchronous module with
optional checking (IEWSXOVR) detects over­
lay requests that would cause the request­
ing segment to be overlayed. This module
checks only those requests that result from
the execution of a SEGWT macro instruction.

UPDATING TABLES

Before segments are loaded, the overlay
supervisor updates the SEGTAB and ENTABs of
the overlay program to reflect the changes
to be made in the overlay structure present
in main storage. For each segment that is
logically overlayed, a status indicator is
reset in the SEGTAB. The SEGTAB is scanned
to find the caller chains (Figure 19),
which are used to reset the ENTAB entries
to their original state (the state before
the segment containing the corresponding
entry point was loaded into main storage).
The ENTAB entries are reset by subtracting
+2 from the displacement field of the
branch. When the SEGTAB and ENTAB entries
of the last segment have been updated, the
segments are loaded.

48

SEGMENT LOADING

During segment loading, the overlay
superv1sor scans the SEGTAB to detern:ine
which segments are needed and directs pro­
gram fetch to load the requested segrrent
and all segments in its path that are not
in main storage.

TERMINATION

The overlay supervisor checks the TEST
indicator in the SEGTAB to determine if the
overlay program is "under testw. If under
test, a LINK macro instruction is issued
specifying the TESTRAN interpreter. After
TESTRAN interpreter execution, control is
returned to overlay supervisor.

If the overlay supervisor was entered
via an SVC 45 instruction (through an
ENTAB), and the ENTAB through which the
request was routed is in the root segment
or 1S in the same region as the requested
segment, the caller chain is updated
(Figure 19) and the address field of the
branch is altered in the calling ENTAB. If
the requesting and requested segment are
not in the same region, the caller chain
and the branch instruction in the ENTAB are
not altered. Subsequent branches to an
altered ENTAB entry are routed directly to
the segment. Control is returned to over­
lay supervisor 1.

The time supervision service routines
are an optional feature of the fixed-task
supervisor for installations that have
selected the hardware timer as a part of
their Computing System/360.

Time Supervision processes:

1. TIME macro instructions--
requests for th,e date and time of day.

2. STIMER macro instructions--
requests to establish an interval to
be timed.

3. TTIMER macro instructions--
requests for the time remaining in a
previously established interval, or
requests to cancel a previously estab­
lished interval.

Time supervision also maintains a queue
pendlng time requests and maintains
relationship between the actual time of
and the hardware.

TIME SUPERVISION ROUTINES

of
the
day

Time supervision includes
service routines: timer
interruption handler (SLIH),
and TTIMER.

the following
second level

STIMER, TIME,

The timer SLIH handles all types of
interval expirations, including those of
the control program, and maintains the
queue of time interval requests.

The STIt-mR service routine sets an
interval into a software interval timer,
specifies when that interval timer is to be
decremented and what action is to be taken
when an interruption signals completion of
the interval. It does these things in
response to an STIMER macro instruction.

The Tn~E service routine places the time
of day in register 0 and the current date
in register 1, when requested through a
TIME macro instruction. The time returned
is the time of day based on a 24-hour clock
that is set with local time by the operator
through the SET command.

The TTIMER service routine tests the
interval timer in response to a TTIMER
macro instruction, and places in register 0
the time remaining in the TASK or REAl.
interval previously set by an STIMER macro
instruction. The TTIMER service routine

CHAPTER 7: TIME SUPERVISION (OPTIONAL)

can also cancel previously specified inter­
vals.

THE TIMING ALGORITHM

Within the timer SLIH is a 4-byte field
called the 6-hour pseudo clock (SHPC). By
manipulating the values contained in the
SHPC and the hardware timer, time supervi­
sion maintains real time while timing a
prespecified interval.

For example, assume that the 6-hour time
of day (TOO), defined as equal to the
contents of the SHPC minus the contents of
the hardware timer, is zero hours. A
request is received for a one hour inter­
val. This is acconplished by placing one
hour in the SHPC and in the timer.

SHPC - timer = 6-hour TOO
1 hour - 1 hour = 0 hour

After an hour, the contents of the timer
have automatically decremented to zero and
an interruption occurs.

SHPC - timer = 6-hour TOO
1 hour - 0 hour = 1 hour

If a 2-hour interval is requested, two
hours is added to the SHPC and two hours is
placed in the timer.

SHPC - timer = 6-hour TOO
(1 hour + 2 hours) - 2 hours = 1 hour

Two hours later, when the interruption
occurs, the correct 6-hour TOO of three
hours is indicated by the SHPC.

To correlate
pseudo clock time
pseudo clocks are

the internal, software
with real time, two ether
maintained by time super­

vision. One is
(T4PC). The other
clock (LTPC).

a 24-hour pseudo clock
is a local time pseudo

Each time the SHPC reaches six hours the
SHPC is reset to zero and six hours is
added to T4PC. The T4PC is reset to zero
each time 24 hours pass. The T4PC is
initially set to zero at initial program
load. The contents of the T4PC plus the
6-hour TOO is defined as the T4PC TOD.

The contents of the LTPC initially is
equal to the time keyed in at the console
by the operator through the SET command.
The local time of day which is returned,

Chapter 7: Time Supervision (Optional) 49

when requested, is computed by adding the
contents of the LTPC to the T4PC TOO.

The three basic time relationships of
the timing algorithm are:

• The 6-hour TOO is equal to the contents
of the 6-hour pseudo clock minus the
contents of the hardware timer.

• The 24-hour TOD is equal to the con­
tents of the 24-hour pseudo clock plus
the 6-hour TOO.

• The local TOD is equal to the contents
of the local time pseudo clock plus the
24-hour TOO.

Time supervision maintains a queue
(Figure 22) of timer queue elements
(Figure 23) representing interval requests.
The timer queue is a two-way chain ordered
so that the request for the next interrup­
tion is at the top of the queue, while the
request for the last interruption is at the
bottom of the queue. To ensure that the
timer queue element is inserted at the
right place in the queue when a new request
is received, the interval requested is
translated into a value that is relative to
the software clocks. This is done by
adding the value of the interval requested
to the 6-hour TOO. This new value is
placed in the TQVAL field of the timer
queue element and is used by the queueing
SUbroutine of the timer SLIH to position
the element on the queue.

r-----------------------------------, I StiPC = 6-Hour Pseudo Clock I L ___________________________________ J

r-----------------------------------,
I T4PC = 24-Hour Pseudo Clock I L ___________________________________ J

r-----------------------------------,
I LTPC = Local-Time Pseudo Clock I L ___________________________________ J

r-----------------------------------,
I TQPTR = Pointer to Tinier Queue ~--,

r->L-----------------------------------J I
I I
I r-----------------------------------,<-J
L __ ~ 6-Hour Element ~--,

r->L-----------------------------------J I
I I
I r-----------------------------------,<-J
L __ ~ Midnight Element ~--,

r->L-----------------------------------J I
I I
I r-----------------------------------,<-J
L __ ~ Pseudo Element I L ___________________________________ J

Figure 22. Timer Queue

50

r---------T----------T--------------------,
I Flags I TCE I Pointer I
I I Pointer I to Successor I
~---------~----------+--------------------~
I Pointer I TQVAL = Time of I
I to Predecessor I Expiration (TOX) I
~--------------------+--------------------~
I PRE I Exit I
I Pointer I Pointer I
~--------------------~--------------------~
I I
I I
I Save Area for 16 Registers I
I I
I I L ___ J

Figure 23. Timer Queue Element (96 Bytes)

When the element reaches the top of the
queue, the interval placed in the timer is
calculated by subtracting the value of the
contents of the SHPC from the value of the
contents of the TQVAL field of the element.
The result of this subtraction is added to
the timer, while the unsubtracted value of
the contents of the TQVAL field of the
element is placed in the SHPC.

At initial program load, two permanent
entries are placed on the timer queue
representing time superv1s10n interval
requests. One is a 6-hour interval request
and the other is a request for an interval
that is calculated to cause an interruption
at midnight, local time. When the midnight
interruption occurs, time supervisor incre­
Irents by one the day-of-the-year count
obtained from the operator's SET comrand.
When the six-hour interruption occurs, time
supervision updates the T4PC and decrements
by six hours the contents of the TQVAL
field in each of the elements in the timer
queue. In addition, a pseudo element is
placed at the end of the queue to mark the
queue's terminal point.

TIME SUPERVISION CONTROL FLOW

As shown in Chart 12, the flow of time
supervision is generally through two paths.
In the first path, control is received from
the SVC FLIH by one of the three SVC
routines STIMER, TIME, and TTlMER.
STIMER and TTIMER interface with the timer
SLIH's queueing and dequeueing subroutines.
TIME and TTl MER return by branching to the
type 1 SVC exit, while STIMER executes an
SVC EXIT instruction. In the second path,
control is received from and returned to
the T/E FLIH by the timer SLIH by
branching.

STIMER

The STIMER service routine sets up time
intervals, represented by timer queue ele­
ments, at the completion of which a timer/
external interruption will occur. When
entered, STI~ER initializes the timer queue
element's fields. STIMER uses the queueing
subroutine of the timer SLIH to insert the
newly created timer queue element into the
timer queue. If a WAIT interval is
requested, STIMER executes an SVC WAIT
instruction.

TIME

The flow through the TIME service rou­
tine consists of testing the input parame­
ters of the TIME macro instruction for the
existence of the various options.

The time -- whether formatted in 26-
microsecond timer units, ten-millisecond
binary units, or packed decimal form -- is
always given in terms of local time of day
(LTOD). This is calculated according to
the formula:

LTOD = LTPC + T4~C + SHPC-timer

where LTPC is the contents of the local
time of day pseudo clock, T4PC is the
contents of the 24-hour pseudo clock, SHPC
is the contents of the 6-hour pseudo clock,
and timer is the contents of the hardware
timer at location 80.

The local time
register 0, and the
register 1.

TTIMER

of
day

day
of

is
the

placed in
year in

The TTIMER service routine determines
how much time remains in an interval
requested by a previous STIMER macro
instruction, and cancels the interval if
the CANCEL parameter is present.

When entered, the TTIMER routine deter­
mines whether the interval has expired. If
it has, no action is taken. If it has not,
the time remaining in the tested interval
is returned to the user in register o.
TTIMER tests for the cancel option and, if
it is present, TTIMER uses the dequeueing
subroutine of the timer SLIH to take the
timer queue element off the timer queue.

TIMER SLIH

The timer SLIH receives control from the
T/E FLIH when a timer interruption occurs.

The SLIH identifies the
that has expired and
specific requirement.

type of interval
then satisfies the

The SLIH removes the expired timer queue
element from the timer queue through one of
its two major subroutines (the dequeueing
subroutine) resets the hardware timer to
time the next interval on the queue, and
resets the SHPC. The action taken by the
SLIH after an expiration depends on the
interval type:

• If it is a WAIT type, the SLIH executes
the SVC POST instruction.

• If it is a REAL or TASK type, and an
exit address was specified, the exit is
scheduled through the Exit Effector
routine.

• If it is a 6-hour tin,e supervision
type, six hours is subtracted from the
TQVAL field of each ti~er queue ele­
ment, and the 6-hour interval request
is queued again.

• If it is a midnight tine supervision
type, the day-of-the-year count is
incremented by cne and the midnight
interval request is queued again.

Queueing Subroutine

The queueing subroutine of the timer
SLIH is used by the dispatcher, the SLIH,
STIMER, and by the SET command handler of
job management, to place a timer element on
the timer queue. The dispatcher uses the
routine when placing a task with a time
interval request in control of the cpu.

The queueing subroutine converts the
absolute time interval in the element to a
relative time based on the 6-hour TOD. If
the interval is found to be smaller than
the current interval on the queue, the new
smaller interval is added to the timer and
placed in the SHPC. If the interval is not
smaller, the correct insert point on the
queue is located for the element, which is
queued.

Degueueing Subroutine

The dequeueing subrcutine is used by the
dispatcher, STIMER, and TTIMER to remove
elements from the timer queue by pointer
rranipulation. If the element was at the
top of the queue, control is passed to the
SLIH, which resets the tin,er and SHPC.
Control is passed back to the caller by a
branch, at the completion of the dequeueing
subroutine, unless a branch was made to the
SLIH, which returns control directly to the
caller.

Chapter 7: Time Supervision (Optional) 51

CHAPTER 8: SYSTEM ENVIRONMENT RECORDING

System Environment Recording is a set of
control program routines which record and
in some cases attempt to reduce the effect
of machine malfunctions in System/360
Models 40, 50, 65, and 75. System Environ­
ment Recording handles two types of machine
malfunctions:

• Malfunctions of the central processing
unit (CPU), which cause machine-check
interruptions, and

• Malfunctions in a channel, which cause
input/output interruptions.

There are two versions of Syste~
Environment Recording:

• System Environment Recording 0 (SERO),
and

• System Environment Recording 1 (SER1>.

Either of these versions may be selected
when a system is generated for Models 40,
50, 65, or 75. If neither is selected,
either SERO or SER1 is used by default.
The version used by default depends on the
model (or models) specified, and on the
size of the system (see IBM System/360
Operating system: System Generation, ForH
C28-6554) •

SYSTEMS WITHOUT SYSTEM ENVIRONMENT
RECORDING

When a machine ~alfunction (caused by a
CPU or channel malfunction) occurs on an
IBM System/360 model which does not have
System Environment Recording, the computer
is placed in a wait state (See Figure 24).
If the system is a Model 30, the operator
may then load the System Environment Re­
cording, Editing, and Printing (SEREP) pro­
gram. This program is described in IBM
System/360: General Programming considera=
tions, Form Y20-0005.

ENTRY TO SYSTEM ENVIRONMENT RECORDING

When a machine-check interruption
occurs, the machine-check new PSW is load­
ed. This causes control to pass directly
to the Syste~ Environment Recording Routine
which 'was selected during system generation
(see Figure 24).

When an input/output interrupticn occurs
because of a channel error, the I/O new PSW

52

is loaded. This causes control to pass to
the I/O FLIH and then to the I/O Supervi­
sor. The I/O Supervisor enters the SER
Interface Subroutine which then loads the
machine-check new PSW (see Figure 24).

SER ROUTINES

SERO is the less complex version of
Syste~ Environment Recording. It deter­
mines the type of malfunction and, if
possible, writes a record on the SYS1.
LOGREC data set describing the error.
SYS1.LOGREC is located on the primary sys­
tem residence volume. If SERO cannot write
the record, the computer is placed in a
wait state and a message is printed re­
questing that the operator use SEREP. If
SERO can write a partial or complete rec­
ord, the computer is placed in a wait state
and a message is printed requesting that
the operator reload the operating system.

SER1 is the more complex version of
System Environment Recording. It also
collects and writes machine environment
data, but in addition, it attempts to
associate the malfunction with the task
being executed. If the malfunction can be
associated with the task and if the control
program has not been damaged, the task is
abnormally terminated. If not, the comput­
er is placed in a wait state.

When the SYS1.LOGREC data set has been
filled, the operator runs the Environment
Recording Edit and Print (EREP) Routine.
This routine formats the SYS1.LOGREC rec­
ords and then writes these records cnto
printer, tape, or disk (according to user
specifications). EREP is described in IBM
System/360 Operating System< Utilities,
Program Logic Manual, Form Y28-6614.

SERO

SERO collects, formats, and writes error
information after a machine-check cr a
channel error has occurred. See Charts 13
and 14. It is divided into two modules:

1. Module IFBSROOO, resident in the nu­
cleus, and

2. Module IFBSROxx (where xx is the Hcdel
number: 40, 50, 65, or 75), located
on the link library. This module is
Hodel dependent. The required modules
are selected during system generaticn.

A CPU Malfunction
causes a

Machine-Check
Interruption

A Channel Malfuncticn
causes an

Input/Output
Interruption

))

(
<-

r--------~--------,
I Load I

r--------i --------,
I Load I
I Input/Output I
I New PSW I

I Machine-Check ~-------,
I New PSW I

r---------------------, L--------T--------J L--------T--------J
I I
I Wait State I 1.
I I L _____________________ J

r---------------------,

I
I
I
I
I
I

I

r----------t----------,
I I/O FLIH I
L----------T----------J

I I
I SERO Routine I 2. r----------t----------,

I
I

r----------t----------,
I I I System I I I/O Supervisor I L _____________________ J

I Generation I I r----t----, I I Option I
r---------------------,

L _____________________ J
I I SER I I

I I
I SER1 Routine I 3.
I I L _____________________ J

Figure 24. System Environment Recording

Resident Module -- IFBSROOO

Module IFBSROOO is non-reusable and does
not require operating system facilities.
It halts all I/O activity and then reads
the first text record of module IFBSROxx
into main storage (beginning 32 bytes past
the end of the nucleus).

Module IFBSROOO saves information (in a
22 byte field in lower storage) to be used
later by IFBSROxx. After it has halted I/O
activity on all devices, IFBSROOO attempts
to read the first 1024 bytes of module
IFBSROxx into main storage. If after ten
retries, these 1024 bytes have not been
read into main storage, IFBSROOO builds lOS
wait state code OOOFOA, and then branches
to the Bell Ring/Wait State module which
sounds the console alarm and places the
computer in a wait state. wait state code
OOOFOA is displayed in the instruction
counter.

Link Library Module -- IFBSROxx

Like IFBSROOO, module IFBSROxx does not
require operating system facilities.
IFBSROxx first loads the remainder of
itself into main storage. It then checks
location 50 to determine which type of
malfunction has occurred, a machine-check
error or a channel error. Location 50 is
preassembled to X'FF'. If the error is a
machine-check error, location 50 will have
been overlayed by the machine-check old

----t-----~Interfacel I I L _________ J I

I I L _____________________ J

psw. If the error is a channel error,
location 50 remains unchanged.

If the error is a machine-check error,
IFBSROxx builds a machine-check record
entry in which to place information atout
the error. If the error is a channel
error, IFBSROxx builds a channel error
record entry. The formats of these reccrds
is shown in Appendix G.

Module IFBSROxx then enatles machine­
check interruptions. General registers are
checked for valid parity on all models
except Model 40. Parity indicators are
available for all registers except 13, 14,
and 15 on Models 50 and 75. Floating point
registers are also checked for valid parity
if the model is equipped with floating
point.

Module IFBSROxx checks the "busy tit" in
each unit control block (UCB) to determine
which I/O units were busy when the error
occurred. The addresses of as many as ten
busy I/O devices are collected. IFBSROxx
then builds a record containing the program
identification, jobname, stepname, day, and
time. After examining the seek address
obtained from the header record of the
SYS1.LOGREC data set, IFBSROxx writes (on
that data set) the record it has just
created and an end-of-file record.

Module IFBSROxx then prints the follow­
ing message to the operator:

Chapter 8: System Environment Recording 53

IFBF05W MACHINE ERROR. RELOAD OS/360

This message indicates that a complete
error record has been written on SYS1.
LOGREC. If a message cannot be printed,
IFBSROxx builds lOS display code 000F05 and
branches to the Bell Ring/Wait State
module.

If another machine-check interruption
occurs while IFBSROxx is collecting data
for an error record, IFBSROxx stops
collecting data and attempts to write a
partial error record on SYS1.LOGREC con­
taining the data it has already collected.
If it is able to do this, it prints the
following message:

IFBF06W MACHINE ERROR. RELOAD OS/360

If a message cannot be printed, IFBSROxx
builds lOS display code 000F06 and branches
to the Bell Ring/Wait State module.

If another machine-check interruption
occurs while IFBSHOxx is attempting to
write a partial error record, IFBSROxx
cannot continue processing. It prints the
following message:

IFBF07S MACHINE ERROR. EXECUTE SEREP

Other errors besides a machine-check
interruption may prevent IFBSROxx froIl'
writing an error record on SYS1.LOGREC.
These errors (with the messages IFBSROxx
prints to the operator) are as follows:

1. An I/O error,

IFBF08S MACHINE ERROR. EXECUTE SEREP

2. SYS1.LOGREC data set is full,

IFBF09S MACHINE ERROR. EXECUTE SEREP

3. Module IFBSROxx could not be loaded
into main storage,

IFBFOAS MACHINE ERROR. EXECUTE SEREP

SER1

Like SERO, SER1 collects, formats, and
writes error information after a machine­
check or a channel error has occurred. See
Charts 15 and 16. SER1, unlike SERO, is a
single, serially reusable module that
resides in the nucleus.

In addition to writing error records,
SER1 attempts to associate the error with
the task which was executing. If it can do
this, and if the control program is not
damaged by the error, SER1 abnormally ter­
minates the task. The system continues to
operate.

54

If SER1 cannot write a complete error
record or cannot associate the error with
the task, or if the error damages the
control program, the computer is placed in
a wait state. The system must then be
reloaded.

SER1 checks location 50 to deter~ine
which type of malfunction has occurred, a
machine-check error or a channel error.
Location 50 is preassembled to X'FF'. If
the error is a machine-check error, loca­
tion 50 will have teen overlayed ty the
machine-check old PSW. If the error is a
channel error, location 50 remains
unchanged.

SER1 gathers error data into either a
machine-check record entry or a channel
error record entry and writes the record on
SYS1.LOGREC. SER1 uses I/O routines pro­
vided by the operating system (it uses the
EXCP macro instruction to communicate with
the SYS1.LOGREC data set) unless the con­
trol program was damaged by the error. If
the control program was damaged, SER1 uses
its own I/O routines. The DEB and DCB
required when EXCP is used reside in the
nucleus and are opened by the nucleus
initialization progra~ (NIP).

If SER1 can associate the error with the
task and if the control program is not
damaged, SER1 terminates the task by
tran~hing to the ABTERM routine. When SER1
rega~ns control from ABTERM, it re­
initializes itself and branches to the
dispatcher so that the system can continue
to operate.

In order for the system to continue
operating:

1.

2.

Another error cannot occur while SER1
is collecting data for a previous
error. If one does, SER1 stops
collecting data and attempts to write
a partial record of the original error
on SYS1.LOGREC. The partial record
contains the data collected before the
second error occurred.

SERl must be
error with
executing.

able
the

to associate
task which

the
was

3. The control program cannot te damaged
by the error.

If the system cannot continue operating,
SERl prints a message on the primary output
device instructing the operator to reload
the operating system. SER1 then places the
system in a wait state.

ENVIRONMENT RECORDING AREA

SYS1.LOGREC is a data set on the system
residence device used exclusively by SERO,
SER1, and all preservation recording sys­
tems. It is formatted during systerr
generation by utility program IFCDIPOO.
The data placed in SYS1.LOGREC is edited
and printed by utility program IFCEREPO
(EREP). These programs are described in
IBM System/360 Operating System: Utili­
ties, Program Logic Manual, Form Y28-66l4.

SYSl. LOGREC
records:

contains three types of

1. Header Record
record in the

This is
data set.

the first
It defines

2.

3.

the extent of the data set, and
addresses the last record written. It
also contains a safety byte used to
detect overrun. The record is 38
bytes in length.

Statistical Data Record Area - This
area contains a record for each unit
control block (UCB) in the systerr.

Record Entry Area - This area begins
on the track following the area occu­
pied by statistical data records.
SERO and SERl write machine-check rec­
ords and channel error records in this
area. The format of these records is
described in Appendix G.

Chapter 8: System Environment Recording 55

CHAPTER 9: CHECKPOINT/RESTART

The CHECKPOINT and RESTART service rou­
tines minimize the amount of time wasted
when a program abnormally terminates.
CHKPT macro instructions are used to divide
the program into sections. When the pro­
gram abnormally terminates, it can be
restarted immediately (this is called Auto­
matic Restart) or it can be restarted later
by the programmer (this is called Deferred
Restart) •

If abnormal terrrination occurs in the
first section of a program, restart begins
at the beginning of the step. This is
called step Restart. If abnormal termina­
tion occurs in any other section, restart
may begin at the beginning of that section.
This is called Checkpoint Restart. Check­
point restart eliminates the need to rerun
sections of a program which have already
run successfully.

If a program is coded using three CHKPT
macro instructions, it is divided into four
sections (see Figure 25). If abnormal
termination occurs in section 3, an auto­
matic checkpoint restart begins at CHKPT B
(if the programmer has requested automatic
restarts) •

Problem Program
r-----------------1

CHKPT A

CHKPT B

CHKPT C

I
I
I
I
I
I
I
I
I
I RESTART
I4--BEGINS
I HERE
I

-----1
I
I

I IF ABNORMAL I
~TERMINATION-J

I OCCURS HERE
I
I
I
I

I I l _________________ J

Figure 25. Problem Program Checkpoints

The CHECKPOINT routine is called direct­
ly when a problem program issues a CHKPT
macro instruction. The RESTART routine is
called by a job management program when a

56

restart is scheduled. Charts 17 and 18
show the logic flow of these routines.

Appendix H contains the format of rec­
ords used by CHECKPOINT/RESTART as well as
a list of CHECKPOINT/RESTART SVC Modules
and Register Usage Table.

CHECKPOINT (SVC 63)

The CHECKPOINT service routine:

1. suspends user I/O requests,

2. Builds a CHECKPOINT entry and writes
it in the CHECKPOINT data set,

3. Restores the user I/O requests,

4. Returns to the caller.

If the caller has suppressed checkpoints,
through use of the RD parameter in job
control statements, no CHECKPOINT entry is
written.

The routine consists of 10 load rrodules
which are executed in the SVC transient
area after an SVC 63 instruction (CHKPT
rracro instruction) is issued. When the SVC
63 instruction is executed, an SVC inter­
ruption occurs and control passes to the
SVC FLIH, the SVC SLIH, and to the first
load module of the CHECKPOINT service rou­
tine (see Figure 26). The remaining load
modules receive control via XCTL rracro
instructions.

A description of the 10 CHECKPOINT
modules follows. When reading
description, refer to Chart 17.

load
this

INITIALIZATION MODULES (IGC0006C, IGC0106C,
IGC0206C)

The first load module of CHECKPOINT
(IGC0006C) determines if checkpoints have
been suppressed. If they have, an SVC 3
instruction is issued to pass control to
the SVC EXIT routine and return to the
caller. If they have not, module IGC0006C
deterrr,ines if the CANCEL operand was speci­
fied in the CHKPT macro instruction being
serviced. If CANCEL was specified, pro­
cessing continues as described in CANCEL
Processing. If CANCEL was not specified,
rrodule IGC0006C issues an OPEN macro
instruction for the CHECKPOINT data set (if
the caller has not already opened the data
set) and then issues a GETMAIN rracro

instruction for a work area in the dynamic
area of main storage. The second load
module (IGC0106C) tests the validity of the
request. If an error is detected, control
passes to checkfoint exit module IGCOQ06C.
If no errors are found, the third load
module (IGC0206C) reads the Job Control
Table (JCT) into the work area, builds the
CHECKPOINT Header Recorder (CHR) (see Ap­
pendix H), and passes control to the Check
I/O Modul.e.

CHKPT Macro Instruction

SVC 63 Interruption ,
I

r-------y--------,
I SVC FLIH I
L-------T--------J

I

r-------~--------,
I SVC SLIH I
L-------T--------J

I

r-------~-----_,
CHECKPOINT

SERVICE
ROUTINES

CHART 17
SHOWS

CHECKPOINT
ROUTINE

LOGIC

I
I
I
I
I
I
I
I
I
I
I

-------T--------J

I

r-----L-----,
I EXIT I
I ROUTINE I
I (SVC 3) I L ___________ J

Figure 26. CHECKPOINT Routine Control Flow

CANCEL PROCESSING

The CANCEL oferand of the CHKPT macro
instruction indicates that the caller does
not want to create a new CHECKPOINT entry,
but wants to suppress automatic restarts
from any previously created checkpoints.
When CANCEL is specified, module IGC0006C
issues a GETMAIN macro instruction to
obtain a small work area and then passes
control to module IGC0206C. Module
IGC0206C reads the Job Control Table (JCT)
into the work area and passes control to
exit module IGCOQ06C.

Module IGCOQ06C sets a CHECKPOINT indi­
cator to show that no CHECKPOINT entry has

been written, and alters the Job Control
Table (JCT) so it doesn't show the previous
CHECKPOINT entries which have been written.
Module IGCOQ06C then returns the Job Con­
trol Table to the input queue and returns
control to the caller via an SVC 3 instruc­
tion. (No messages are written to the
operator.)

If an abnormal termination occurs after
CHKPT CANCEL processing has been completed,
no automatic checkpoint restart is fer­
formed. However" the CHECKPOINT entries
which have been written are retained, and
the prograwmer can restart the step from
one of these entries at a later tiwe (by
submitting the proper restart Job Control
Language).

CHECK I/O MODULE (IGC0506C)

The Check I/O Module (IGC0506C) issues
the PURGE macro instruction specifying the
QUIESCE option for each Data Extent Block
(DEB) associated with the caller's Task
Control Block. This causes all of the
caller's pending I/O requests to be rewoved
from the Logical Channel Queues, or if
already started, to be completed. If a
permanent error occurs in a completing QSAM
or QISAM I/O request, an error code is
returned to the caller, and no checkpoint
is written (unless the QSAM ACC option was
specified for the data set). When all of
the caller's I/O activity has completed,
control passes to the next module
(IGCOA06C) •

PRESERVE MODULES (IGCOA06C, IGCOD06C)

The Preserve Modules (IGCOA06C and
IGCOD06C) write the CHECKPOINT Header Reco­
rd (CHR) created by the third module, then
build and write a Data Set Descriptor
Record (DSDR) for each Job File Control
Block, Job File Control Block Extension,
and Generation Data Group Bias Count Table.
(Formats of these records are shown in
Appendix H.) If end-of-volume occurs for
the CHECKPOINT data set on tape, IGC0206C
is called to attempt to rewrite with a new
tape. If end-of-volume occurs for the
second time on tape or the CHECKPOINT data
set is on a direct access device and
end-of-volume is detected or an I/O error
occurs in either module, contrel is trans­
ferred via XCTL to the Resume I/O Module.
If none of the above errors occur' control
then passes to the Checkmain Module.

CHECKMAIN MODULE (IGCOF06C)

The Checkmain Module (IGCOF06C) writes
the contents of problem program ~ain
storage onto Core Image Records (CIRs).

Chapter 9: CHECKPOINT/RESTART 57

Then a Supervisor Record (SUR) is- con­
structed with task control information and
written as the last record in the CHECK­
POINT entry. (Formats of these records are
shown in Appendix H.) Control then passes
to the Resume I/O Module via an XCTL. If
an I/O error occurs or end-of-volume is
detected on either tape for the second time
or on a direct access device, control
passes to the ~esume I/O Module with an
error code. If end-of-volume occurs for
the first time on tape, control is passed
to IG0206C to reprocess the tape.

RESUME I/O MODULE (IGCON06C)

The Resume I/O Module (IGCON06C) issues
the RESTORE macro instruction for each Data
Extent Block (DEB) associated with a pre­
viously suspended I/O request. The
requests are restored to the logical chan­
nel queues, and if possible, started. Con­
trol then passes to exit module IGCOQ06C.

EXIT MODULE (IGCOQ06C)

For a normal exit, module IGCOQ06C
issues a STOW reacro instruction if the
CHECKPOINT data set has partitioned organi­
zation. It then issues a CLOSE macre
instruction for the CHECKPOINT data set
(unless the caller issued the OPEN),
updates the CHECKPOINT flags and count
fields in the Job Control Table (JCT),
restores the JCT to the job queue, and
frees the work area. For an exit after an
error has occurred, the preceding functions
are performed if necessary. Control then
passes to the Message Module.

MESSAGE fi~ODULE (IGCOS06C)

The Message Module (IGCOS06C) writes a
message indicating successful or unsuccess­
ful con:ple.tion. One of the following
return codes is placed in Register 15
before control is returned to the caller
via an SVC 3 instruction:

58

X'OO' Valid CHECKPOINT entry written.

X'08' No CHECKPOINT written; calling
error.

X'OC' Permanent I/O error.

X'10' A valid CHECKPOINT entry was
written, but there were outstand­
ing ENQs. It is the responsibi­
lity of the user to restore these
ENQs during RESTART.

RESTART (SVC 52)

The RESTART service routine uses infor­
mation in a CHECKPOINT entry to recreate
the conditions that existed when the CHECK­
POINT entry was written.

The RESTART routine:

1. Restores the problem program to its
original location in main storage,

2. Opens and positions any problem pro­
gram data sets which were open when
the CHECKPOINT entry was written,

3. Restores task centrol information,

4. Passes control to the problem program
instruction iremediately following the
CHKPT macro instruction from which
RESTART is occurring.

The routine consists of 14 load modules
which are executed in the SVC transient
area after an SVC 52 instruction is issued.
Before the SVC 52 instruction is issued, a
job management routine (IEFDSDRP) adjusts
the job queue, and assures that device
allocations are compatible with those which
were in effect when the CHKPT nacro
instruction was issued. Just before exit­
ing, IEFDSDRP changes the name of the
restarting step to IEFRSTRT. This program
consists of only an SVC 52 instruction.

When the SVC 52 instruction is executed,
an SVC interruption occurs and control
passes to the SVC FLIH, the SVC SLIH, and
to the first load module of the RESTART
service routine (see Figure 27).

A description of the 14 RESTART load
modules follows. When reading this
description, refer to Chart 18.

INITIALIZATION MODULES (IGC0005B, IGC0105B)

The first load module of RESTART
(IGC0005B) receives the address of a para­
reeter list built by job management routines
from information in the CHECKPOINT Header
Record (CHR). From this parameter list,
RESTART determines what the problem program
(dynan:ic) area boundaries were when the
CHECKPOINT entry was written. It then
issues a GETMAIN for the same area (this
includes a RESTART work area). A Data
Control Block (DCB) for the CHECKPOINT data
set is contructed in the work area, and the
RESTART SVRB and the current Task Input/
Output Table (TIOT) are moved into the
area. An OPEN macro instruction is issued
for the CHECKPOINT data set, and the next
module is called.

The second load module (IGC0105B) moves
additional CHECKPOINT data set control
blocks into the work area. It positions
the CHECKPOINT data set at the first Core
Image Record (CIR) and calls the Repmain
Module.

REPMAIN MODULE (IGC0505B)

The Repmain Module (IGC0505B) reads the
Core Image Records (CIRs) into probleJr
program storage, and reads the Supervisor
Record (SUR) into the work area. (Formats
of these records are shown in Appendix H.)
The address of the "old" Free Area Queue
Element (FQE) is moved to the Boundary Box,
and the TCB fields saved by the CHECKPOINT
routine are moved into the current TCB.
The Repmain Module restores the floating­
point registers, if any, and places the
current protection key in all Program Requ­
est Blocks (PRBs). Control then passes to
the first Job File Control Block (JFCB)
processing module.

SVC 52 Interruption

<
r-------y--------,
I SVC FLIH I
L-------T--------J

I

r-------t--------,
I SVC SLIH I
L ______ ~-------J

I

r-------t--------,
I
I
I
I
I
I
I
I
I
I

RESTART
SERVICE

ROUTINES

CHART 18
SHOWS

RESTART
ROUTINE

LOGIC

I NO~ES I r ERROR -,
I I I
I I I L __ + __________ + __ J

I I

r------t---, r---t------,
I EXIT I I ABEND I
I ROUTINE I I ROUTINE I
I (SVC 3) I I (SVC 13) I L __________ J L __________ J

Figure 27. RESTART Routine Control Flow

JOB FILE CONTROL BLOCK PROCESSING MODULES
(IGCOG05B, IGCOI05B)

The first Job File Control Block (JFCB)
processing module (IGCOG05B) creates a
table in the work area for each JFCB
associated with a data set that was OPEN
when the CHKPT macro instruction was
issued. A DEB, DCB, lOB, and FCB are
constructed within the table for later
repositioning I/O operations. Control then
passes to the second JFCB processing
module.

The second Job File Control Block (JFCB)
processing module (IGCOI05B) reads in a
JFCB Extension for Sequential Access Method
(SAM) data sets which reside on more than
five volumes. Several extensions nay be
read until the one containing the volume
serial number which was in use when the
CHKPT macro instruction was issued is
found. Unless all problem progran data
sets reside on direct access storage
devices, control passes to the first Mount/
Verify module. If all data sets are on
direct access storage, control passes to
the Direct Access Mount/Verify Module.

MOUNT/VERIfY MODULES (IGCOK05B, IGCOM05B)

The first Mount/Verify module (IGCOK05B)
processes all data sets except those resid­
ing on direct access devices. For SYSIN,
SYSOUT, unit record, and graphics data
sets, processing consists only of adjusting
the Data Extent Block (DEB).

For magnetic tape data sets, the volume
serial number in the primary Unit Control
Block (UCB) in the data set's Task Input/
Output Table (TIOT) entry is compared to
the volume serial number in the work area
table entry built from the Data Set De­
scriptor Record (DSDR). If they are the
same, the necessary adjustments are wade to
the UCB and the DEB. If the volume serial
numbers do not match, the secondary UCBs
(if any) are searched. If the correct
volume is specified in one of them, it
becomes the primary UCB. If the volume is
not mounted, a suitable UCB is selected
from the TIOT entry, and a MOUNT message is
written to the operator. For any tapes
with nonstandard labels, a user-supplied
verification subroutine is called. After
all tape data sets are processed, control
passes to the Direct Access Mount/Verify
Module or to the Non-Direct Access Proces­
sor ~lodule.

The Direct Access Mount/Verify Module
(IGCOM05B) performs exactly the same func­
tions as the first Mount/Verify module,
except that no label checking is done, and
all volumes of a concatenated data set with
partitioned or direct access organization

Chapter 9: CHECKPOINT/RESTART 59

are mounted. An error, such as no suitable
UCB for a volume, causes RESTART to termi­
nate with an error message. If no error
occurs, control passes to the first direct
access position I/O module (IGCON05B) or to
the Non-Direct Access Processor Module.

NON-DIRECT ACCESS PROCESSOR MODULE
(IGCOL05B)

This module is used only in PCP. The
Non-Direct Access Processor Module
(IGCOL05B):

1. Writes SYSOUT tape header labels for
deferred restarts,

2. Primes buffers for the card reader.

To write header labels, a tape must
already be mounted and must have been
positioned (ty the scheduler) beyond the
tape mark which closes the previous file.
The JFCB associated with the data set is
read into main storage. Information frorr
this JFCB is used to write the header
labels. All label fields are in EBCDIC and
the labels are followed by a tape mark.

To prime buffers, the user must keep a
count of the number of GETs the problerr
program issued before the CHKPT macro
instruction was issued. If the access
method is in move mode, all buffers are
primed. If it is in locate mode, all but
one buffer is primed.

If an I/O error occurred, control passes
to the RESTART Exit Module. If not, con­
trol passes to module IGCON05B to position
direct access data sets, or to module
IGCOP05B if there are no direct access data
sets.

POSITION I/O MODULES (IGCON05B, IGCOQ05B,
IGCOP05B, IGCOR05B)

The first direct access position I/O
module (IGCON05B) determines if any direct
access data sets have been deleted. When
processing is completed, control passes to
the second direct access Position I/O
module (IGCOQ05B). This module performs no
function in PCP. It passes control to
non-direct access Position I/O module
IGCOP05B or to direct access position I/O
module IGCOR05B.

The non-direct access Position I/O
module (IGCOP05B) moves magnetic tape data
sets to where they were located when the
CHKPT macro instruction was issued.
IGCOP05B assumes the following:

60

• System input data sets have been posi­
tioned by the scheduler to the first
data record of the user's input stream.

• Nen-standard label data sets have been
positioned by the user label routine to
the first data record on the current
volume.

• If this is a deferred restart, system
output data sets have been positioned
by module IGCOL05B. (If this is an
automatic restart, system output data
sets will be rewound and positioned
now.)

• All other tape data sets are positicned
at load point.

IGCOP05B positions tapes with standard
labels or no labels to the first data
record. Then, using the BLKCT field of the
DCB, IGCOP05B advances each tape data set
to where it was located when the CHKPT
macro instruction was issued. If the BLKCT
field is negative or zero, the data set is
positioned to the beginning or end, de~end­
ing on whether forward or backward proces­
sing was in progress when the CHKPT rracro
instruction was issued. Control then
passes to the Final Processing Module or to
direct access Position I/O module IGCOR05B.

Direct access Position I/O module
IGCOR05B checks each data set residing on a
direct access storage device to determine
if the space allocation limits of the data
set (described in the Data Set Control
Block (DSCB) on the volume) have changed
since the CHKPT macro instruction was
issued. The limits which existed at that
time are described in the Data Extent Block
(DEB) saved by the CHECKPOINT routine. If
the space allocation limits of an input
data set have changed (indicating that the
data set has been modified), RESTART is
terminated.

If the space allocation limits of an
output data set have changed, the smaller
of the two space allocations is placed in
both the DSCB and the DEB. If the DSCB
allocation is reduced, the Partial Release
module of the CLOSE routine is called to
return the released space to the free area.
When all direct access data sets have teen
checked, control passes to the Final Pro­
cessing Module.

FINAL PROCESSING MODULE (IGCOT05B)

The Final Processing Module (IGCOT05B)
reads the directories of any user output
data sets with partitioned organization to
detect members added after the CHKPT macro
instruction was issued. If any are feund,

they are deleted with the STOW macro
instruction.

Finally, the RESTORE macro instruction
is used to reschedule any user I/O requests
suspended by PURGE during CHECKPOINT pro­
cess1ng. Control then passes to the
RESTART Exit Module.

EXIT MODULE (IGCOV05B)

The RESTART Exit Module (IGCOV05B) first
tests an error code field in the work area
to determine if entry is for an error
termination. If an error code is found,
message IHJ007I is issued. The exit module
then issues an ABEND macro instruction to
abnormally terminate the task.

If no error has occurred" the exit
Jrodule compares the sizes of the old Task
Input/Output Table (TIOT) and current TIOT
(which was saved in the RESTART work area).
If the current TIOT is smaller or equal to
the old TIOT, it overlays the old TIOT, and
the RESTART work area is freed. If the
current TIOT is larger, it is moved to the
end of the work area, and both the remain­
der of the work area and the old TIOT are
freed. The exit module writes message
IHJ008I to inform the operator that the job
is being restarted. It then loads a com­
pletion code of X'Oq' into Register 15 to
inform the problem program that it is being
restarted, and issues an SVC 3 instruction
to pass control to the problem program.

If the program again abnormally ter­
minates (and RESTART has not been
deferred), RESTART will again be attempted.

Chapter 9: CHECKPOINT/RESTART 61

CHARTS

• Chart 01.

62

Fixed-Task Supervisor Control Flow
(Described in the introduction to this manual)

****A2********* * ANY * * INTERRU.PTION ,.
* •

INTERRUPTION
SUPERV(SI ON CHART 02

X
*****C2**********
* * * ENTRY ,.
,. PROCEDURE 5 *
* * . .

F IXED-T ASK SUPERV tSOR COMPONENTS

- TASK SUPERVISION

ABEND

CHARTS 03-06

ATT ACH

ENQ

EXTRACT

POST

- MAIN STORAGE SUPERVISION

FREEMAIN GErMAIN

- CONTENTS SUPERVISION

DELETE

tOENT IFY

LINK

LOAD

SPIE

WAIT

DEQ

CHART 07

CHART 08

SYNCH

XCTL

x - PROGRAM FETCH CHARTS 09-10 .*.
E2 *. --------------------------------------.* * • • * eXECUTE *. - OVERLAY SUPERVISION CHART 11

*. SERVICE .*X ••••••• X-
,... ROUT [NE .. * ---------------------------------------

. . * •• * - TIME SUPERVISION CHART 12

*

X
*****G2**********
* * * EXITING * * PROCEDURES *
* * * • *****************

X
****J2********* * PROCESSI NG * * PROGRAM *

* •

TIME

STIMER

TIMER 5LIH

TTIMER

- SYSTEM ENVIRONMENT RECORDING

SERO

SERI

- CHECKPOINT/RESTART

CHARTS 13-14

CHARTS 15-16

CHARTS 17-18

- OTHER CONTROL PROGRAM COMPONENTS

DATA MANAGEMENT ROUTINES

JOB MANAGEMENT ROUTINES

I/O SUPERVISOR ROUTINES

- I/O SUPERV ISOR

- TEST RAN

PLM Y28-6616 -

PLM Y2B-6611

INITIAL PROGRAM LOADER----------CHART 19

NUCLEUS INITIALIZATION PROGRAM--CHART 20

Chart 02. Interruption Supervision Control Flow
(Described in Chapter 1)

lEAA,[H IEAAIH
*****A2.********* *****A3********** *****A5**********

****Al********* ,. SVC FLJH""'''' *TYPE 1 EXIT ,.,
* 5VC,.. *-*-*-*-*-*-*-*-* TYPE 1 *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-*
'" Ii"'TERRUPTION * •••••••• X*SORT5 our TYPEt* •••••••• x* APPROPRIATE * •••••••••••••••••••••••••••••••••• X* FINDS OUT IF * ••••
• '" *SVCS. SETS TYPE. svc '" TYPE 1 SVC '" .TYPE 1 SW CA.LLR*
*************** '" 1 SWITCH * '" ROUTINESET OR DISABLED.

***************** *******.*** •• ***. ***.** ••••• **** ••

IEAATA X
*****62********** *****63**.*.****.
... SVC SLIH'" '" '"
--*-*-*-*-*-*-* TYPE 2 *-*-*-*-*-*-*-*-*
'" SETS UP AND * •••••••• X. APPROPRIATE •••••••
.QUEUES SYRS ON '" SVC '" TYPE 2 SVC *
* ACTIVE LIST * * ROUTINE *
***************** *****************

*****C3********** . .
• RESIDENT TYPE 3 *-*-*-*-*-*-*-*-*
................... x* APPROPRIA.TE * •••• x.

OR 4 SVC * TYPE 3 OR 4 *
* SVC ROUT INE *

.IEAATA
USES FINCH *****03********** *****04**********

TO GET * * *eXIT SVC 3*
• TYPES 3.,4 *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* •
••••••••••••••••• X* APPROPRIATE * •••••••• X*DEaUeuES THE RB* X.

SVCS *TYPE 3 OR 4. SVc* * FROM THE *
* ROUTINE * * ACTIve R6Q *
***************** *****************

IF CALLER IS PSEUDO DISABLED

IEAAIH •
*****E2********** **E3*******

****EI********* * I/O FLIH * * *
* INPUT/OUTPUT * *-*-*-*-*-*-*-*-* * INPUT / *
* INTERRUPTION * •••••••• X* SAVES AND *X ••••••• X* OUTPUT *
* * * RESTORES * * SUPERVISOR *

*************** *MACHINE STATUS * * *
***************** ***********

X
****E4*********

* INTERRUPTED *
* SERVICE *
* ROUT INE *

· . ••• X.

IEAQEXOO
*****F2********** *****F3**********

****Fl********* *T/E FLIH * *T/E ROUTINE *
*TIMER/EXTERNAL * *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-*
* INTERRUPTION * •••••••• X*POST ECBS. SET *X ••••••• X* APPROPRIATE *
* * *IRBS. ADJ CLOCK* *TIMER/EXTERNAL *

*************** *+ TIMR REQ QUE * *SERVICE ROUTINE*
***************** *****************

· X.

lEAAIH IEAAPLOO IEAAABOO
*****H2********** *****H3**********

****Hl********* * P FLIH *NO *PROLOG * ****H4*********
* PROGRAM * *-*-*-*-*-*-*-*-*PIE *-*-*-*-*-*-*-*-* * *
* INTERRUPTION * •••••••• X*CHECKS FOR PIE * •••••••• X*SETS CQMPLETION* •••••••• X* ABTERM *
* * * SHOWING USER * *CODE., TC8 ADDR,* * *

*************** ... ANTICIPATION * * AND RET. AODR * ***************
***************** *****************

.PIE

IEAAPS X
*****H5**********
* DISPATCHER *
--*-*-*-*-*-*-*
*DETERMINES NEXT'"
* ROUTINE TO *
* CONTROL CPU '"
"'*"'**************

F
o
R

T
Y
P
E

5

• I
T
C
H

5
E
T

A
N
o

o
I
5
A
B
L
E
M
E
N
T

· . . ••• x.x •••••••••••

****Kl********* ****K3******.**
* MACHINE CHECK * MACHINE WAIT * SYSTEM *
* It.lTERRUPTION * X* ENV IRONMENT *
* * STATE OR * RECORDING *

*********.***** ***************

****J4.*********
... FROM *
* ANY SERVICE *
* ROUTINE *

.****.**. x

IEAATA
*****K4*********.
*VALIDITY CHECK *
--*-*-*-*-*-*-*
* TESTS *
* ADDRESSES •
* •
*******.*********

X
****K5**.***"'*'" • • * PROCESSING *

... PROGRAM ...

Charts 63

Chart 03. Task Supervision Control Flow
(Described in Chapter 2)

IEAAATOQ X
*****C1**********
'" ATTACH '"
--*-*-*-*-*-*-*
"'PASSES CONTROL '"
'" TO AND FROM '"
'" REQUESTED RTN '"

****A3*********
'" FROM *
'" SVC * * FLIH OR SLIH *

IEAAADOO . . THROUGH •
.IEAAXRQO X 1 EAAPT X IEAAENOO X IEAAAD03 X

*****C2********** *****C3********** *****C4********** *****C5*********.
'" EXTRACT '" * POST * '" ENQ '" * ABDUMP '"
--*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* * PROVIDES •••••• X ••• * SIGNALS THAT * RESERVE A * •••• X •••• _ PREPARES FULL '" * I NFORMATI ON * * AN EVENT HAS '" DIRECT ACCESS'" * STORAGE DUMP * * FROM TCB * * OCCURRED '" .STORAGE DEVICE", * FOR ABEND *
***************** ***************** ***************** *****************

.IEAAPXOO
*****D~**********
* SPIE *

• *-*-*-*-*-*-*-*-*
••• X*ESTABLISHES PIE*

* AND SETS PSW *
* PROGRAM MASK *

IEAAWT IEAADEQO
*****03********** *****04**********
* WAIT * * DEQ *
--*-*-*-*-*-*-*. *-*-*-*-*-*-*-*-*

STOPS TASK *X ••••••• X* FREE A DIRECT *
UNT IL EVENT * *ACCESS STORAGE *

* IS POSTED * * DEVICE *
***************** *****************

. .

IEAATMOO
THROUGH
IEAATM05

*****05**********
* ABEND *
--*-*-*-*-*-*-* • * ENDS TASK. IF *X
* DUMP REQ~USES *
ABDUMP OR GIVES
*1 NOI CAT IVE*DUMP*

X

• X. X •
****E5********* *JOB MANAGEMENT *

••• X.X •••••••••••••••••••••••••••••••••••••

.x.
F3 * •

• * *. ****F4*********
.* *. NO * * *. TYPE 1 SVC .* •••••••• X* EXIT *
. . * * *..* *************** * •. * * YES

X
****G3********* • • * TYPE 1 EXIT * • •

SVC ENTRY AND EXIT PROCEDURES ARE SHOwN ON CHART 02

64

IEAAABOO
*****J3**********

****J2********* * ABTERM * ****J4*********
* FROM * *-*-*-*-*-*-*-*-* * RETURN *
* ANY SERVICE * X* SCHEDULES * •••••••• X* TO *
* ROUTINE * * ABEND * * CALLER *

*************** * * ***************

* GO * * MODULE *

• Chart 04. ENQ/RESERVE Service Routine (IEAAENQO)
(Described in Chapter 2)

IGC056

****A3*********
'" '" FROM
'" ENG '" SVC
'" '" SL IH

x
.* •

• ****61.*******.. 83 *.
IEAOVLOO 06 .* *.
--*-*-*-*-*-*-* RESERVE .* ENQ OR *. '" CHECK INPUT .X.................................... RESERVE .•
.PARAMETERS FOR '" *. REQUEST .*
'" VALIDITY '" *. .*
.**************.* * •• *

ENQ

x .*. .*.
Cl "'.. C2 * •

.. '" "'.. .. '" THE *. . .* ALL *. YES .* vee *. NO X

ENO 15 HANDLED
AS A NOP IN PCP

•• ADDRESSES ARE.* •••••••• X*.REPRESENTS A ••
. VAL 10 . *. SHARED .. '" *..* *.DA5D .*

* •• * * .• *
'" NO '" YES

FINDMAJ X .*. .*.
*****02********** 03 *. D4 *.
'" SEARCH '" .* *. .* "'. "'MAJOR aCB Queue. .* ace FOR *. NO .* *. YES •
*FOR MAJOR NAME * •••••••• X*. MAJOR NAME .* •••••••• X*. RET = TEST .*•........• X.
* (aNAME) OF * *. EXISTS .* *. .*
• RESOURCE * *..* *..*
***************** * •• * * •• * * YES * NO

FINOMIN
*****E2********** * SEARCH *
• MINOR ace aUEUE* •
*FOR MI NOR NAME *X •••••••••••••••••
* (RNAME) OF *
• RESOURCE *

x

CREATE 1 X
*****E4**********
* • • • *SUILD MAJOR aCB*
* * * •

.*. .*. CREATE2 X
F2 *. F3 *. *****F4********** •• *. .* *. * * • * ace FOR *. NO • * *. NO * •

. MINOR NAME •••••••••• X. RET = TEST .* •••••••• X*SUILD MINOR aCB*
. EXISTS . *. .* * *
.. *..* * *

* •• * * •• * ***************** * YES *VES

x .*. G2 *.
• * *. • NO .* RET=TEST. *.

X
*****G4********** · . * INCREMENT *

.X •••••••••••••••• *.USE. OR HAVE .* * TeB AND UCB *
_RESERVE COUNTS *

X
****Jl********* * TO * * ABEND ROUT INE *

• (SVC 13) *

*. • * *. . *
* •• * * YES

X
*****H2**********
• * * * *RETURN CODE = 8*
* *
• * *****************

X
*****H3**********
* •
* • *RETURN CODe = 0*
* * * •

· . *****************

x .*. X
H4 *. *****HS**********

.* *. • * •• RET=TEST. *. YES. *
.USE. OR HAVE . •••••••• X*RETURN CODE = 0*

. . * * *..* • •
*. •• ********.***.****

• NO

. .
••• x.

X
****J5********* . .

* RETURN *
• • ***************

TO REQUESTING
ROUTI NE

Charts 65

• Chart 05. DEQ Service Routine (IEAADEQO)
(Described in Chapter 2)

66

IGC04.a

****A3********* • • * CEQ * • • • _* •• _ •••••••••

x .•.
*****Sl*.*** •• *** 63 *.
IEAOVLOO 06 .* *. *-*-*-*-*-*-$-*-* RELEASE .* CEQ OR *. OEQ * CHECK INPUT .X.................. •••••••••••••••••• RELEASe: ••••••
• PARAMETERS FOR * •• REQUEST •••
• VALIDITY * *. . • ••••••••••• _..... * •••

•

x
••• FJNDMAJ _t.

Cl *. *****C2********** C3 •• _. *. * SEARCH * .* ••
•• ALL *. YES .MAJOR aCB QUEUE. .* aCB FOR *. NO

FROM
svc
SL[H

* DETERMINED FROM
CODE BITS IN
PARAMETER LIST.
CEQ IS HANDLED
AS A NOP IN PCP •

•• ADDRESSES ARE •••••••••• X.FOR MAJOR NAME ••••••••• X •• MAJOR NAME ••
•• VALID .* * (QNAME) OF * *. EXISTS ••
.. * RESOURCE * *.._

. . ******* •• *** •• *** •• .* * NO * YES

X
• ***01****.****

* TO * • ABEND ROUTINE * * (SVC 13) • •••••• * ••••••••

FINDMIN X * •••• 02* ••• ** ••• *
• SEARCH •
• MINOR QCB QUEUE*
*FOR MI NOR NAME •
• (RNAME) OF •
• RESOURCE • •••••••••••••••••

•• * •• 03 *. * •• * *_.. ._04 ••• **. *
* • * • .INITIALIZE lOB.. • ISSUE •
*DCB. ECB. DEB •••••••••• X*EXCP TO RELEASE*
* CCW. AND AVT • * DEVICE •
• • • • * ••••••••••• _._.. ._._ ••••• *-

x .'. E2 *.
NO •• QCB FOR *.

•••• *. MINOR NAME .*
•• EXISTS •• *. ••

• YES

x

..E3** •••••
• • .GETMAIN lOB ••

• Dca. EeB. DEB ••
.CCW. AND AVT •
• * •• * ••••• _* . x

• YES
X .*.

.**.*F2 •••••• ***. F3 *.
• * .* •• • DECREMENT * .* UCB ••
• UCB RESERVE ••••••••• X •• RESERYE COUNT ••
• COUNT * *. = 0 ••
* * *..* .• _ ..••••.•••. *..

• NO

X
.** •• G2 •• **...... ** •• *G3.*.* ••• *.*
• DEQlEUE MI NOR.. •
• QCB AND. • DECREMENT _

X
•• E4* ••••••

* • • WAIT •
.FQR COMPLETION •

• OF I/O *
• • * •••••••• * •

X
F4 •• **. • • *FREEMAIN lOB ••

*DCB. EeB. DEB. *
*CCW. AND AVT *
• • * •• *.* •••••

*FREEMAIN SPACE *X •••••••• * TCB RESERVE *X •••••••••••••••••
• IT OCCUPI ED • • COUNT •
• • * • * •••••••• * •• ***.. * ••••••• ** •••••••

x .*. H2 •• • •• *.H3 •• *.** ••• _
• * _. * DEQUEUE MAJOR *

•• LAST MI NOR •• YES * QCB AND •
•• QCB ON MINOR •••••••••• X*FREEMAIN SPACE.

*.QCB QUEUE.. • IT OCCUPIED *
*. . * • * •• •• *.* •••••• * •••••••

* NO

•• x •
•••••••••••• X •• X.

X
•••• J5* •• **.* •• · . • RETURN • • • * ••••••••• * ••••

TO REQUESTI NG
ROUTINE

• Chart 06. Validity Check Subroutine (IEAOVLOO)
(Described in Chapter 2)

****Al********* * VAL IDITY >I<

* CHECK * * SUBROUTINE *

x .*. . *. . *.
61 *. 82 *. 83 *. *****84********** .* *. .* *. .* *. * * ****85********* .* IS CALLER *. SYSTEM .* REQUEST *. YES _* IS *. NO *CHANGE REQUEST * >I< RETURN *

SYSTEM OR PROC. •••••••• x*. = RESERVE .* •••••••• X*. DEVICE .* •••••••• X*FROM RESERVE TO* •••••••• x* TO CALLER *
. PROGRAM . *. .* *.SHARABLE .* * ENQ-SYSTEMS * X * *
.. *..* *..* * * ***************

* •• * * •• >I< * •. * ***************** * PROC. * NO * YES
PROGRAM .. • •

••••••••••••••••••••••••• X •••••••••••••••••••••••••••••••••••••••

x .*.
*****(1********** (2 *.
*VAL IDITY CHECK * *. * BOUNDARIES OF * .* *. NO * PARAMETER ••••••••• X*. VALID .* ••
* ELEMENT * *. • *
*- - - - RETURN * *.. *
***************** *. • * * YES

x .*.
*****02********** 03 *.
*VALIOITY CHECK * .* *.
* MA JOR NAME * • * *. NO
* * •••••••• X*. VALID .* •• X.

* * *. .*
*- - - - RETURN * *. . *
***************** * •••

• YES

x .*.
*****E3********** E4 *.
*VALIDITY CHECK * .* *. * MINOR NAME * .* *. NO •
* * •••••••• x*. VALID .* •••••••••••••••• X.
* * *. .* *- - - - RETURN * *..*
***************** * •• * * YES

x
.* .

F4 * •
• * *.

NO.* REQUEST * •
•• *. = RESERVE .*

*****G2**********

* * • *CHANGE REQUEST *
• X •• *FROM RESERVE TO*

* ENQ-SYSTEMS *

* * ************c**** x '

• NO

. . *. .*
* •• * * YES

x .*.
*****G3********** G4 *.
*VALIDITY CHECK * .* *.
* BOUNDARIES OF * YES.* ONLY *. NO
* EXTENDED *X •••••••• *. ELEMENT IN .* •••••••••••••••• X •
* ELEMENT * *. LIST .*
*- - - - RETURN * *._*
***************** * •• * •

.*. .*. X
H2 *. H3 *. *****H5**********

.* *. .* *. * * .* IS DEVICE *. YES .* *. NO * SET *
*.DIRECT ACCESS.*X •••••••• *. VALID .* •••••••••••••••••••••••••••••••••• X* ABEND CODE. *

AND SHARABLE* *. .* * INVALID *
.. *..* * *

* •• * * •• * *****************
* YES *

• x •
••• X.

X
****J5*********

* RETURN *
* TO CALLER *

* * ***************

Charts 67

Chart 07. Main Storage Supervision Control Flow
(Described in Chapter 3)

FOR MOOULES IEAAMSOO.IEABMSaO.IEACMSaO.IFADM500

****A3********* * FRiJM * * 5VC FLIH *
* * ************** *

.*.
83 * •

• * *.
PARAMETER-LIST GETMAIN REQUESTS .* REQUEST *. PARAMETER-LIST FRfEMAIN REQUESTS .. *. TYPE' .* .. .

*. .. * *. .. *

IGC004 GETMAIN
Rt::GI5Tt:k-TYPE
RFQUESTS [Geoos F'REEMAI ".J

X
*****Cl**********
* * * ANALYZES *
* PARAMETER *
* LIST *
* *

x
*****c~********** · . * ANALYZES * PARAMETER * LIST · . *****************

X IGCOIO .*. X
*****01********** 03 *. *****D5**********
* * .* *. * * * FINDS * NO .* *. YES * MAKES AREA *
* SPACE *X •• - ••••••••••••••••••••••••••••••• *. FREEMAIN .* ••••.••.•..••••••••••••••••••• - ••• x* PART OF FREE

* *. .* * ARFA
* * *. .* ***************** * •• *

X

*****El********** * SETS UP QUEUE *
ELEMENT SHOWING
* USAGE + *
* REMAINING *
* FREE AREA *

*

OPTIONS

1. VALIDITY CHECKING.

2. CODING TO FREE AL.L STORAGE
AREAS OCCUPIED EW INACTIVE
ROUTINES IF REQUIRED TO
SAT ISFY THE Rt-_(W::::ST ..

* •

X
*****E:.5********** · . * COMBI NES AREA * * 'WITH ADJACENT *
* ARE:.A *
* •

. .

..................... ' ... x.

X

****F5*********
* * '* TYPE 1 EXIT · ***************

SVC ENTRY AND EXIT PROCEDURES ARE SHOWN ON CHART 02

68

Chart 08. Contents Supervision Control Flow
(Described in chapter 4)

IEAADLOO
IEABDLOO

x

DELETE

*****c I ********** • • * REDUCES .. * USE COUNT * • • • • * •••• * ••• * •••••••

x .0.
Ot *. .* •• .* USE *. NO *. COUNT=O •••••• •. .*

. .
* •• * * YES

X
*****El*********.
*FREEMAIN *
--*-*-*-*-*-*-* .. CLEARS Res *
.FROM LOAD LIST *
.. AND STORAGE •

••••••••••••••••• . .
.X •••••••••••

X
****Fl********* * • * TYPE 1 EXIT *

* •

OPTION

IEAAIDOO IDENTIFY

X
*****Hl**********
• GErMAIN *
--*-*-.-*-*-*-*
.. CREATES M tNOR ..
.. LPRB. QUEUES *
• ON LOAD LIST .. ••••••••••••• * •••

X
*****.J 1.lIt •••••• _.

• • .. QUEUES ..
.. LPRB.ON .. * ~INOR LIST .. • • •• lIt •••• _ ••• * •••••

****A3 ********* * FROM SVC *
.. FLIH OR ..
* 5LIH *

IEAATC LOAD

.*.
C3 *.

.* *. .* ROUT INF *. NO *. PREVIOUSLY .* ..•. *. LOADED .*
. . * •• * * YES

X
*****03**********
* • * I NCRf:.ASES * - ••••• * USE COUNT *
• • * •
*1'****.**********

X
*****E3**********
*FINCH *
--*-*-*-*-*-*-* * USES FETCH. • * QUEUES RB •
• ON LOAD LIST *
*.***************

- . .
- •••••••••••• x.

lEAASYOO SYNCH

X

*****H2********** _GETMAIN ..
--*-*-*-*-*-*-* .. OBTAINS ..
.. SPACE ..
.. FOR PRe ..
•••• lIt ••••••••••••

X
*****J?********** • • * CREATES AND * * tNtTIALIlE~ *
* PRe * • •
****.************

IEAATC LINK-

X
*****H4**********
*FREEMAIN *
--*-.-*-*-*-*-* * MAKES SPACE * * FOR LINKEE. *
* •

X
*****J4**********
*FINCH *
--*-*-*-*-*-*-* * USES FETCH TO * * GET LINKEE. * * QUEUES RB. *

IEAATC XCTL

.x.
CS *. .* *.

YE S • * XCTLOR *. • ••• *. ON LOAD .*
... LIST ••

. . * •• * • NO

X
*****05**********

• * * PLACES RB * * OF XCTLOR ON * * INACTIVE LIST * • •

. .
••••••••••• x.

NOTE THI S TEST IS -
PERFORMED ONLY IF
THE RESIDENT TYPE
3 OR 4 SVC ROUTt NE -
OPTION IS SELECTED -

.x.
F5 *. .* IS *.

YES.* TYPE 3 *.
•••• *. OR 4 XCTLEE .*

•• RESIDENT .*
. *

• NO

X
*****G5**********
*FINCH *
--*-*-*-*-*-*-* * USES FETCH * * QUEUES RS ON • * ACTIVE LIST *
*********.*******

• x x X •
••• X.

SVC ENTRY AND EXIT PROCEDUR~5 ARE SHOWN ON CHART 02 x
X

****K5********* • • * EXIT * o •

Charts 69

• Chart 09. Program Fetch Control Flow
(Described in Chapter 5)
ENTRY I S BY
BRANCH AND LINK (BAL)

M[N007 •••
A3 •• * •••• A4 •••••• ***. ..**.A5 ••••••••••

•••• AI •••• • •••• •••• '* GET TTR OF '* '* *'
• ENTRY FROM * .*IS PROGRAM •• NO .SCAT/TRANS TBL '* .eXAMINE LINKAGE..
* OVERLAY *

• •••• 2 ••••••••• '* ENTRY FROM '*
_CONTENTS SUPER-.
.. VI SOR (FINCH) '* ••• X •• IN OVERLAY •••••••••• X*FRQM PDS OtRCTV* •••••••• x* EDITOR * *' SUPERV J SOR *' ..STRUCTURE.. .AND READ (EXCPJ* '* HIERARCHY ,. . __ *..* .SCAT/TRANS TBL '* • ATTRIBUTES • *........

• YES INITIALIZATION

leweosv X IEWMSEPT X MIN009 X x ...
••••• SI ••••• *** •• • •

••••• S2 •••••••••• ••••• B3 •••••••••• • •••• B4.......... BS ••

• • • SET • • • ..15 ONLY •• '* RECEIVE '* • RECEIVE '* • UP CHANNEL • .FREE SCAT/TRANS. YES •• ONE ••
'* NOTE LIST '* '* DeB, BLDL '* • PROGRAM AND •

.READ NOTa=: LIST •
• AND CAL..CULATE .X.......... HIERARCHY ••

• ADDRESS ,. '* PARAMETERS *' .STORAGE NEEDED. ..SPECIFIED ••

• • ••••••••••••••••• • • • •••••••••••••••• • • · ""
· . • x •••••••••••••••••••••••••

NINOOS X ••• x X
••••• CI.......... C2 •• ••••• C3.......... • •••• C4 ••••••••••
• • •••• FJNCH. • EXTRACT.. •
• INITIALIZE I/O • •• ••• • REL..AT IVE DISK. • SET •
• BL..OCKS AND ••••••••• X •• ENTRY FROM •••••••• • ADDRESS (TT R) .X ••••••••• UP BLOCK LOAD •
• CHANNEL. •• •• .FOR FIRST TEXT. X. •
• PROGRAM(51. • •••• ·
• 3 CHANNEL

PROGRAMS
FOR PCI

• OVERLAY
• SUPERVI SOR

FETCH: LOADING

MIN006 X MINOIO X 02.......... 03 ••••••••••
• EXTRACT. • SET UP •
• RELATIVE DISK. • CHANNEL •
• AODR (TTR) FOR ••••••••• X. PROGRAM, lOB, •
• SEGMENT FROM. X • EXECUTE EXCP, •
• NOTE LIST. • AND WAIT •

• •••• 04 ••••••••••
• PLACE •

• • RELOCATED •
••••• •• CONTROL SECTION.

• ADDRESSES IN *
• SCATTER LIST •
* •• ** ••••• * •••• *.

x

............. ··············x···

••••• EI ••••••••••
• SET •
• CHANNEL.. PROGRAM.
• TO REAO RL..O •
• AI'ID/OR CON TROL •
• RECORD _

••••••••••••••••• x

• NO ...
Fl ••

••••• E2 ••••••••••
• TURN ON 'FETCH.
• LAST JNO' IF •

••• X. NEXT RCO IS •
• LAST, SET UP •
• PROG FR CTRl.. •

x

x .•.
E3 ••

• • WAS • FETCH •• YES
..LAST IND' SET ••••••

•• IN RLO ••
•• BUF ••

• NO

x
••• CONTROL •••

F2 •• F3 ••

• •••• E4.** ••••• *.
.FROM ALL DC ADDR.
• (GETMAIN) AND •
• SCAT,fTRANS TBL ••
.CALC EACH CONT •
• SECTION AOOR ••
* •••••• * •• ** •••• *

x

• NO

X
• •••• C5 ••• * ••••• *
'" CALCULATE •
• EXTENT LIST •
• LENGTH AND •
• PLACE IT IN • * EXTENT LIST * • ••••••••••••• * ••

X
•• ***05 •••••• * •••
• CALC CONTROL •
.SECTION LENGTHS. * USI NG LIST OF •
.DRDERED ORIGINS.
• IN SCAT LIST • • •••• * •••••••••••

X * •••• E5 •••••••••• • • • PLACE CONTROL •
.SECTION LENGTHS •
.IN EXTENT LIST. · . ..*

X

YES.. •• •• •• NO •• ••

• •••• FS •••• * ••• *.
*GETMAI N • . .-.-.-.-.-.-.-.-.

• •••••••••••••••••• GE T STORAGE AS •
* NEEDED FROM. •

• • :.. ••• l..AST RECORD •• •• RECORD TYPE •• X....... .•. PC I FETCH ••
• x

..
• RLO • YES

• NO .•. :RELOCATION x x
••• RELOCAl"ION

Gl ••
•• •• YES •

•• RLO/CONTROL ._ ••••••
•• RECORD ._

• x

• •••• G2 ••••••••••

• •
• AD .lUST VALUE •
• OF ADDRESS • _ CONSTANTS • ·

G3 •• • •••• G4 •••••••••• '"
•• RLD •• YES • ADJUST VALUE •

••• X •• PROCESSING TO •••••••••• X. OF ADDRESS
•• BE DONE' •• • CON STAN TS

• •• * "' •••••••• * •••• "' ••
• NO

· . • •••••••••••••••••••••••• X.
X

FREE ••• BUFFER

*HI ERARCHY a + 1. • ••• **.* ••• "' •••••

••••• HI.......... . •... H3** ••... * •• H4 •• • •••• HS •••••••••• _.
• WAIT FOR • • • WAIT FOR • •• •• YES • WAIT FOR '"
• THIS BUFFER TO ••••••••••••••••••••••••••••••• X.X ••• BUFFER TO BE • •• LAST BUFFER •••••••••• X.LAST I/O TO BE •
• BE FILLED • • FILLED • •• •• • POSTED • *... . . ••••••••••••••••• • ••••••••••• * ••••

x x • NO . .
•••••••••• X.x •••••••••••

. ~ .~
• MINOle ••• • •• M IN030 X X

Jl •• J3 •• ••••• .14 •••••••••• •• •• • .* •• · . •• •• YES .YES •• "'. • ROTATE •
•• PRIOR BUFFER x •••• BUFFER FULL •• • BUFFER PO INTERS* ••••

•• FULL •• X •••• • • · • * ••••• *"' •••••••• · . x x

.x •••••••••••••••••••••••••
• YES • NO • YES

••••• KI.*........ K2 .. •••• K3"··*. K4··· •• '"
• • NO •• •• YES • '" •• NO.. LAST •• •
• EXCP .X •••••••••• BUFFER FULL •• X •••••••••• I/O COMPLETE ."'X •••••••••• RECORD READ •• X ••• • • •• •• •• •• *. •• · '" "'... ••••••••••••••••• • •• * ••• >Ie •••• · . .

.... : .. .

70

• •••• JS* •••••••••
'" COMPUTE •
.RELOCATED ENTRY.
.POINT. INITIAL- •
.IlE SF.GTAt:l FOR.
.OVERLAY PROGRAM • • •••••• * •••••••••

X
• ••• KS •••• * •• *. · . • RETURN • • • ••••••••• * •••••

Chart 10. PCl and Channel End Appendages
(Described in Chapter 5)

PCl APPENDAGE

****A2.*.******
* *
*E NTRY FROM lOS *
* *

x .0.
*****81 ********** 82 *.
* PUT * .* *. * CCW IN NEXT * YES .* *.
.CHANNEL PROGRAM*X •••••••• *.ccw IN RECORD ••
* RELOCATE ADOR * *. .. * * * *..o *
***************** * ••• o NO

x x
• *. • 0 •

Cl * .. C2 *. *****C3**********
.* *. .. * *. * * .* *. NO .* *. YES * POST * *. LAST RECORD •••••••• *. LAST RECORD .* •••••••• X*LAST RECORD ECS* *. .o.
*. .o.

* •• * * YES

X
*****01**********
o *
* SET CHANNEL *
*PROGRAM TO READ.
* TEXT AND STOP *
* 0 *.lII* •••••• _*._.*.

. . * * *. .. * * * * •. * ***************** * NO

X
*****02********** o 0
* SET CHANNEL *
.PROGRAM TO READ. * RLD AND STOP *
* * ***************** . .

••••••••••• x.

x
.. *. x

E2 *. *****E3********** .* *. * POST ECB * .. * BUFFER *. NO * TO ALLOW *
. AVAILABLE . •••••••• X* NECESSARY *

. . x * RELOCATION TO *
.. * BE DONE *

* •• * *****************
* YES

. .
••••••••••••••••••••••••• X.

X

*****F2********** • • * REPLACE NOP *
* WITH TIC TO * ••••••
* NEXT CHANNEL *
* PROGRAM *

X
*****F3**********
• *
* ROTATE *
CHANNEL PROGRAM
* POINTERS *

* * *****************

X
****G3*********

* •
* RETURN TO IDS * . .

CHANNEL END
APPENDAGE

****A4*********
o *
*ENTRY FROM lOS *

• 0 ***************

X
*****B4**********
* 0
*SET UP RESTART *
* OF CHANNEL *
* PROGRAM *

• * *****************

x
.* .

C4 *.
.* * . .* *. YES

. MISSED PCI . ••••••••••••••••••
. . CHANNEL END

. . OCCURRED BEFORE
* •• * PCI APPENDAGE

* NO COULD CHANGE
NOP TO TIC.

x .* .
04 *. .* *.

NO.* CHANNEL *.
•••• *.END FOR LAST .*

. BUFFER .
. . * •• *

* YES

X
*****E4**********
* * * POST *
LAST RECORD ECB
* *
• * *****************

X X
****F4********* o 0

* NORMAL RETURN *
* TO 105 *

****F5*********

* * *RETRY RETURN TO*

*************** x

• NO .*.
G4 *.

.* *.
• .* NEXT *. YES

* lOS *
*************** x

••• x*. BUFFER ••••••••••••••••••••
.AVAILABLE.

. . * •• *
*

Charts 71

Chart 11. Overlay supervision Control Flow
(Described in Chapter 6)

JG(045

** •• A3********* * FROM * * SVC SLIH * • • •••• *********** **** • •
• 84 * • •

IGC037 X X

.*.**S4***.****** •• ***82*.*.***.*. .****83 •• * •• ****.
****el ••• ****.. *CHKS TO SEE IF * * EXTRACTS AD DR * * FROM * *REFERRED TO AD-* * OF CURRENT *

• 5VC SLIH * •••••••• X.CON IS RESOLVEO* •••••••• X. SVRB, AOOR OF * * •• TO AN ENTAB. * *SEGTAB AND REOD.
*.**.*.***.*.** * SEGLD=NOP * * SEG'S NUMBER * ••••••••••••••••• * ••••••••••••••••

SEGLO.SEGWT

RESIDENT OVERLAY SUPERVISOR 1 --

x
**** * •

'" 85 '" . .
•• **

]EWSVOVR

* * ****S5*********
'" RESTORES * * '"
'" REGISTERS ••••••••• X* EXIT *
* '" X"'''' '" * *************** *********.*******

**** • • * 85 * • *

=============.== .==
NON-RESIDENT OVERLAY SUPERVISOR 2 -- IEWSVOVR, IEWSXOVR

IEWSXOVR ONLY

.L

.1

.N

.K

X

* * * 05 *
* * ****

OVRL18 .*. X
*****02********** 03 *. *****05**********
* CHECKS SEGWT * .* IS *. * IF PROGRAM *

ERROR* REQ TO SEE IF * NO .* REQUESTED *. YES - * 'UNDER TEST' *
••• * REQUESTED SEG *X •••••••• *SEGMENT IN MAIN* •••••••••••••••••• X •••••••••••••••• *SETS UP + LINKS*

* WILL OVERLAY * *. STORAGE .* * TO TESTRAN *
• *REQUESTI NG SEG * *.. * * 1 NTERPRETER *
X ***************** *. .* *****************

**** * XR * * L.E * H3 * 1. T
* * N.U

**** K.R
X .N

- OVRL60 .*. X
----------------.------------ E4 *. **ES*******

.* *. * * INIT IALIZATION .* WHERE *. SEGWT * TESTRAN *
---------------------------------------.--------------------------------------- *. WAS ENTRy...... • INTERPRETER * *. FROM .* * (IEGTTRNO) *

.. * *
* •• * x ***********

* IGC045 ****
• (ENTABJ * *

* 84 * * • ••••••••••••••••••••••••• X. X......................... ****
x

OVRL30 • *. OVRL40.
F2 *. *****F3**********

• * ANY *. * RESETS SEGT AS *
.* TABLE *. YES *ST AT INDRS FOR *

.ENTRIES TO BE. •••••••• X* OVRLD SEGS, *
. RESET . * ENTAB ENTRIES *
.. *IN CALLER CHAIN*

* •• * ***************** * NO X IF
• NECESSARY

X
*****G3**********
*OVERL80 *
--*-*-*-*-*-*-*
* COMPUTES AND *
*VALIDATES ADOR *
.OF SEGTAB ENTRY*

.E
**** .R

• *.R * H3 *.X.D
* *.R

X

*****H3**********
**** * * * * * SETS *

* 84 *X •••• * ERROR *
* * * CODe *

**** * *

UPDATE TABLES:

it .•.
*****Jl********** J2 *.
* MARKS SEGTAB * .* OTHER *.
*ENTRY. SUBSTI- * YES .* SEGS THAT *.
• TUTES NO. OF .X •••••••• *MUST BE MARKF.D.*
• PREV SEG FOR * *.FOR LOAD-••
VAL OF LAST SEG *. ING .*
***************** ••• *

• NO

OVRLSO X
.****Kl********** *****K2**********
*FETCH 09. * SCANS SEGTAB * ****
--*-*-*-*-*-*-* *REQUEST LOADING* * * * (IEWFTMIN) *X ••••••• X* DF MARKED ••••• X* 05 *
LOADS REQUESTED • SEGMENTS * * *
* SEGMENTS * * * ****
***************** *****************

SEGMENT LOADING

72

X
*****F4**********
* UPDATES ENTAS * ****
*HIERARCHY INFO * * *
.IF REGIONS THE ••••• X* 84 *
• SAME OR ENTAB * * •
.IS IN ROOT SEG * ****

- TERMINATION

-SVC ENTRY AND EXIT PROCEDURES ARE SHOWN ON CHART 02

Chart 12. Time Supervision Control Flow
(Described in Chapter 7)

•••• Cl •••••••••
* FROM *
• TI'E FLIH • • • •••••••••••••••

IEAOTIOO i
••••••••••••••••••••• .TIMER SLIH •
-_.--_.-*-*-.-*-*
.UPDATES TIMER. •
• POSTS ECBS. •
.QUEUES AND DEQUEUe S*
_TIMER ELEMENTS. •

X
•••• Gl ••• ** ••••

• • * TI'E FLIH * • • •••••••••••••••

.* •• C2 •• **** •••
• FROM •
• SVC SLIH • • • •••••••••••••••

lEAOSTOO X ••••••••••••••••••••• _STINER *
--*-*-*-*-*-*-*-*-*
• SETS TIMER *
*ELE MENT AND Ext T *
• ADDRESS. USES *
*TI'E SLIH TO *
• OLE UE ANO DEQUEUE. * • ••••••••••••••••••••

X
•••• G2 •••••••••

• •
• EXIT * • • •••••••••••••••

SVC ENTRY AND EXIT PROCE-DURES ARE SHOWN ON CHART 02

•••• C3 •• * ••••••
• FROM *
• SVC FLJH * • • • ••••••••••••••

IEAOSTOO X • •••••••••••••••••••• *TTIMER •
--*-*-*-*-*-*-*-*-*
_RETURNS INTERV AL *
.LEFT. MAY CANCEL •
• BY USING T/E SLIH •
.TO DEQUEUE. •
•••••••••••••••••••••

lEAORTOO X • •••• E4* •••••••••
.TIME •
.-.-.-.-.-*-*-*-. * OBTAINS •
• DATE AND •
• TIME. • ****** ••• *** •••••

. .
• ••••••••••• ••••••••• •••• X.

X • ••• G4.* ••••• * •
• • * TYPE 1 EXIT • • • ** ••••• ** •••• * •

IN SYSTEMS WITHOUT
A HARDWARE TIMER

****CS* ••••••••
• FROM •
• SVC SL.IH * • • • •• *.* ••• * •••••

IEAORTIO X
** ••• ES** •••• * •• *
*TIME •
.-*-*-.-*-*-.-.-.
• OBTAINS ..
.. DATE. • • • ••••••••••• *.* •••

X
•••• GS •••••••••

• •
• EXIT .. • • .* ••••• **.*** ••

Charts 73

Chart 13. SERO Link Library Module Control Flow
(Described in Chapter 8)

._._At_
* * .. START ..

* * ***************

x .*. .*. ."'.
BI *. *****82 ••• ******. 83 *. 64 *. *.***85 ••• *.*.**. ••••* *. .*.. .. * .• *. NO .. seT" •• *. 65.75.. *. NO .. seT UP RECORD .. *. MODEL 50 .* •••••••• x. UP SERO PASS * •••••••• X*.MODEL NUMBER .* •••••••• x*. LOCATION •••••••••• x* ENTRY FOR * *. •• X" DSECT.. *_ .* x •• SO=FF •• .. MACHINE CHECK .. *...* *..*
*. •• • •• ****** •••• *.*. •• •• • •• * ****** •• *******.*

.. YES .. 40.50 .. YES

X
.*Cl*.**.*.
* * * ••
_DIAGNOSE LOCAL •••••••
• STORE ..
• * ***** •• ******** ••

74

X x X
*****C3 •• *** •• *** .****C4********** *.*.*cs**********
* * .. seT UP"" ..
.. LOAD .. • .. RECORO ENTRV LPSW. A ..
.POINTER TO CVT * •••••• .. FOR CHANNEL * •••••••• X*PSEUOO MACHINE *
.. MACRO .. *CHECK (INBOARD)* * CHECK ENABLE *

• * * * * * ****************. ***************** **.**************

.*. X *****02***** •••• * *.***03***....... 04 *. *****05**********
• * * GENERAL * •• * • * SET •
* LOAD * * PURPOSE *' 65.75.* •• * UP MACHINE *
*POINTER TO CVT *x •••••••• *REGISTER PARITY*'X •••••••• *.MODEL NUMBER .*x •••••••• * CHECK HANDLER.
* MACRO * * TEST * •• .* .. ADDRESS *
.. * *' * *..* * *
***********.***** ***************** *. .* ***************** * 40.50

· . • X •••

X
*****E2********** *****E3**********
* * * * * ADJVST. *LOAD REMAINDER *
* CCW ADDReSS * •••••••• X*OF MODULE INTO *
* * * CORE *
* * * * ***************** ***.*****.*.*****

x .•.
F3 * •

• * *. 50 .* *. 65.75
•••• *. MODEL NUMBER • * ••••••••••••••••••

. . *. .* * •• * • 40

x .*. X
G3 *. *****64****.***** •• *. * * .* *. YES • FLOATING •

•• FLOATING •••••••••• X*POINT REGISTER.
. POlNT . * PARITY TEST *
*... * *

••• * *****.*********** * NO .. .
••••••••••• x.X •••••••••••••••••••••••••

x
• NO

X .*.
*** •• H3******.*** H4 *.
* * .* *.
• GET * .* I/O *. YES ••••••••••••••••• X* VCB ADDRESSES * •••••••• X*. UNIT ACTIVE .* ••••••••••••••••••
• • *. .* * • *..*
***************** ••• * •

• NO X .*. .*. .*. J2 *. *****J3****.***** J4 *. J5 * •
• * *. * * .* *'. • * *. •• END *. * EXTRACT * YES.* CUA = *. NO .* *.

*. OF VCB .*x •••••••• *FIRST CCW. FAIL*X •••••••• *. eVA OF I/O .*X •••••••••• CPU FAILURE .*
. ADDRESS . X * CCW AND CSW • *. OLD PSW .* *. .*
.. * * *..* *..*

* •• * ***************** *. •• * •• * * yes *' NO *' YES

x
***.*
*14 * * 8t*
• *
*

. . .
••• •••••••••• •••••• •••• •••••••• •••••••• X •••••••••••••••••••••••••

NOTE eVA CHANNEL AND UNl T ADDRESS

chart 14 • SERO Link Library Module Control Flow (continued)
• lII •••

*14 * * Bl • • • •
• *. . •.

B1 •• 82 *. ***.*83********* • • * *. • lie *. * * .* MACHINE •• NO .* •• NO • SET * *. CHECK .* •••••••• X*. FAILING CUA .* •••••••• X.FLAG IN RECORD *
•• INTERRUPT.. *. FOUND .* * ENTRY *
.. *.. * * * * •• * •• •• • ••••••••••••••••

* YES * YES

• x •
• x •••

x
*****c 1********** *****C2********** *****C3**********
* * * * * * * EXTRACT * * • * READ * * PROGRAM [0, ••••••••• X*READ RO RECORD * •••••••• x* HEADER RECORD.
* DATE.TIME *. * lie· *
* * * * * * ** ___ •••• __ •• ____ lIe.lIelll.lIelll •• lIIlIe __ •• _. _._ ••• _ •• _ ••• ___ _

X

x .'.
*****o:;!.********* • • 03 *. *****04********** *****os***.***** •
• RE-ENABLE *
.MACHINE CHECKS *
• • • • .lIelle ••••••••• _ ••••

X

YES .•.
E2 •• • lIe.*EI......... * ADDITIONAL * .* FIRST *. *MACHINE CHECKS * ' X*.MACHINE CHECK.*

* * *. .* ***'************ *..* * •• *
• NO

X
*****G2**********
• * * SET UP • *INTERFACE WITH *
* SEREP *
• * ***********.*****

• * *. * * * • .* HEADER *. YES '* UPDATE '* * WRITE *'
. RECORD SAFETY . •••••••• X* SEEK ADDRESS *' •••••••• X* RECORD ENTRY *

.BYTE == FF. * .. * DATA *
*... * * * *'

. . ***************** *****************
• NO

X
*****G3**********
• SET * * UP IDS * .WAIT-ST ATE COOE*
*' X'F07' * • • *************.***

x .•.
*****E4********.* ES ••
* * .* * •
• WR I TE END * NO • * RECORD *. *OF FILE ON LAST*X •••••••• *.ENTRY ON LAST.*
* TRACK * *. TRACK .*
* * *.. * *'*********.****** * •• * * YES

x X
*****F4********** *****F5**********
• • * * * WRITE" * WRITE END * *UPDATED MEADER *x •••••••• *OF FILE ON LAST*
* RECORD * * TRACk *
• • * * *'.*'************** *********.*******

X
*****G4**********
• SET * * UP 105 •
WAIT-STATE CODE * X'F05' * • • ******* •• ********

. .
••••••••••••••••••••••••• x.

x
******H3**********,

PRINT •
ERROR MeSSAGE

• •

X
******H4* ••• ****.**
• PRINT END OF JOB * MESSAGE •

*******.*****

. .

.......................... x.

X
*.**J4********* * • * WAIT STATE * • • *****.*********

Charts 75

Chart 15.

76

SER1 Control Flow
(Described in Chapter 8)

.***"2****.***. • • * ENTRY FRON Me *
* P5W * -* _ -

x .*. *****82 •••• ****** ••••• 83.......... B4 •• * •• * •• *.
... SAVE. * LOAD BASE. •• CHANNEL •• YES
.REGISTER 13 IN * •••••••• X. REGISTER FROM ••••••••• X*. FAILURE ••••••••••••••••••••
• LOCATION 372. x * NEW Me PSW. *. ._ • *. • *..* * •••• * ••••• *.*.*. • ••• * •••••• * ••• ** * •••

•• **.C2 •••• * •••••
• 0 .CLEAR POTENTI AL* • ••• x. BAO PARITY IN _ ••••••
• ALL REGISTERS * • • • ** ••••••••••••••

. .
.MODEL 50 X

•• *.*02 ••• ***** •• o •
• COMPACT GP ...
• REGISTERS IN •
* RECORD ENTRY *
* AREA *

X
*****E2 ••• *******
* MODIFY * * OIAG. ..
INSTRUCTION FOR
* ~S SECTOR 2 * • •

• NO

X
.*C3* •• *.*. • •• _*e •••••••••••
... * * CLEAR'" _MOVE LOG AND Me.
• PENDING MACHINt:*X •••••••• * OLD PSW TO ...
... CHECKS'" * RECORD ENTRY *
... •• AREA **...........

MODEL 40 X
*****03********** • • * STORE GP *
* REGISTERS IN * * RECORD ENT RY *
* AREA *

x .•.
E3 *.

.* *. .* FP *. NO
. REGISTERS . ••••••

".AVAILAB~E.*
. . *. ~* * YES

X
*****04**********
* PARITY *
* TEST AND SAVE *
GP REGISTERS IN
* RECORD ENTRY * * AREA *'

X
*****E4*********.
• PARITY ..
* TEST AND SAVE *
*FP REGISTERS IN.
* RECORD ENTRY *
* AREA •
•• ***.***********

X
*****CS**********
* •
.. MOVE LOG AND .. * CSW TO RECORD *
.. ENTRY AREA *
* •

X
*****05********** * MOVE *
* FIRST AND *
FAILING CCWS TO
* RECORD ENTRY * * AREA *

x
*****es**.******* * MOVE * * CUA FROM I/O * * OLD CSW TO *
* RECORD ENTRY *
* AREA *

· . • x •••••••••••••••••••••••••
:MOOE~ so X x X

*****F2********** • • *****F3********** *****F4********** *****FS**.*******
* *. * *. MOVE CUA •

* DIAGNOSE * * STORE FP * X. MOVE DATE AND * * OF ALL ACTIVE * * LOCAL. STORE * * REGISTERS IN * •••••••• X*TIME TO RECORD * •••••••• X* I/O UNITS TO * SECTOR * * RECORD ENTRY * X * ENTRY AREA * * RECORD ENTRY

• * *****************
* AREA * * * * AREA •
********.******** ***************** *****************

x .•.
G2 *. *****G3**********

• .* *. * *
.YES .* *. NO * COMPACT FP *
•••• *.INITIAL ENTRY.* •••••••• x* REGISTERS IN * •••••• *. • * * RECORD ENTRY *

.. * AREA *
* •• * ***.*******.***.* •

X
*.***G5******.*** * MOVE *
* CHANNEL TYPE *
* ASSIGNMENT TO *
* RECORD ENTRY *
* AREA *
****************.

x
• *. .*. . * •

• ****H2********** H3 *. H4 *. H5 *.
• • .* *. .* *. .* *. * PARITY TEST * NO.* OLD MC *. NO.* IS *. NO.* CHANNEL *.
* ALL OF MAIN *X •••••••• *.PSW = TO SUP .*X •••••••• *.SCHEOULER IN .*x •••••••• *. FAILURE .*
* STORAGE * *. MODE .* *.QPERATION.* *. .*
• * *..* *..* *..*
***************** * •• * * •• * * •• *

* YES * YES * YES

x .•.
J2 * • • * BAD *. • • • * PARITY *. YES X X •

. OUTSIDE PP . •• X.
. AREA .

. . * •• * o NO

x .*.
K2***** **K3******* K4 *.

* * * * .* *. * * * EXCP TO * .* *. YES ..
* PURGE I/O * •••••••• x* READ HEADER * •••••••• X*. I/O FAILURE .* •••••••••••••••• X.
* * * RECORD * *. .*
* * * * *..* *********** *********** * •• *

• NO

x

*16 •
* AS* • *

*

x

*16 •
* 81* * •

*

Chart 16. SERl Control Flow (continued)

• ** ••• 2 •••••••••• A3.......... 4•..... I......... '" '" '" . '" '" '" SECOND '" '" LOAD BASE '" '" "'. SOUND •
'" AND THIRD Me ••••••••• x* REG] STE~ FROM '" ••• Xlt! HALT ALL I/O ••••••••• X. CONSOLE ALARM '"
'" ENTRY '" '" LOCATION 372 '" '" '"

.....
*16 '"
'" Bl.

< <
<

x
•• *.*c •••••••••••
< <
< <
'" HALT ALL I/O ,,"x •••
< •

• <
X ** ••• 01 ••••••••• •

o •

x
• <.

82 *. •• *.
•• •• YES • *. THIRD ENTRY .!tI •••• x.
*. . '" *. .-* •• -< NO

.<.
C2 ••

.It! ••
•• USING •• YES •

III. STA~O ALONE • * •••••• *. 1,10 ••

*. . '" * •••
o NO

x
• 0. 02 _.

• * *.
'" READ '" • NO.* *.

'" '" '" . '" . '"
X

• •••• 84 ••••••••••
o •
• wRITE •
• MESSAGE TO •
* OPERATOR *
o 0

x .•.
*****C3******.*** C4 *.
* * .* *. * * NO.* RECORD *.
*SETUP FO~ SEQEP*X * .E~TRY WR I TTEN.*
* * *. oo* * * ..oo*
******.********** *. •• * YES

. .

.x oo ••••••••••••••••••

X
..**03*******.* . .

.****

.16 *
* A5*

o 0
o

X
*****A5********** . .
* UPDATE *
* HEADER RECORO *
* I N CORE *
o •
******* •• *****.**

x
.0 •

85 *.
.* *. .* *. NO

.RECORD ENTRY . ••••
. FIT .

*. • * * •• * * YES

X
CS •• *.*

o 0
* EXCP •

* WRI TE RECORD *
* ENTRY *

o 0
*.*********

x .•.
05 *. .* * • YES .* *.

'" HEADER RECORD '" ••• : ••••• HEADER RECORD •• * WAIT * •••••••••••••••••• *. I/O FAILURE .*
o • · . ••••••• *** •••••••

*. READ • '"
*. • '" * •• '"

'" YES

• 0 *. .*
*************** *. .* * •• *

• NO

. .
••••••••••••••••••••••••••• x •• oo

x .0. x .*. X
E I *. *****E2*.******** *_***E3********.* E4 *. .*ES •• **.*.

.* *. * * * * •• *. * • • * *. NO * UPDATE * * • YES .* *. * EXCP •
•• I/O FAILURE .. * x* HEADER RECORD * * HALT ALL I/O *x *. I/O FAILURE .*X •••••••• * WRITE HEADER * ... •• * IN CORE * * * •• •• *' RECORD * *.... • * * * *..* * *

* ... * .*** •• **** •• ***** ******.********.* * •• * **.*.**.*,,*
* YES

x .*. X
F2 •• *****F3**" •• * ••• * .* *. * • • NO .* *. YES • WRITE *

• X •••••••••••••••••• RECQRD ENTRY .* •••••••• X. RECORD ENTRY •
•• FIT.. * *'

*. • * * * * •• *' .*** ••• ** ••••• ***
o

x .0.
G3 *.

oo* *.
• YES •• ••
.x ... *. I/O FAILURE •• *. •• *. •• * •• * o NO

.*. X
H2 •• ***."H3.***_***.* . *.. • *

• YES .* *. * WRITE * .x •••••••••••••••••• I/O FAILURE .*X ••••••••• HEADER RECORD.
. . * • *oo.. * '"

*. •• .***** ••• ******* •
• NO

X
****.J2** ••• ** •••
• 0

• • 0 .X •••••••••••••••• " WRITE END OF *
* FILE • o 0
••• **-**.*****-*

X
••• **K 1 * ••• ***... • •• **K2.* •••• *... *****K3*.*.**_***

• NO

X
F4***** * •• **F5.** •• * •••• • * • •

* EXCP * " RESTORE TASKS *
• WRITE END OF * •••••••• ·X. TO A .X •••

* FILE. • OISPATCHABLE • * * • STATE •
•••••••• *.* **.**** •• * •••••••

X
GS.**_*

o •
* WTO * _ MESSAGE TO *
_ OPERATOR *

o 0
*****.*.* ••

X
H5***** o •

* BRANCH * _ TO ABTERM *
o
* 0

-**.***

X
*****-15*.**** ••• *
o •
* HOUSKEEP *
* SERI FOR *
* REUSABI LI TY *
o •
.******._******.-

X
* * * * * * ****K4********* ****K5***** •• **
* * * SOUND * * WRITE * * *
• HALT ALL I/O ••••••••• X* CONSOLE ALARM * •••••••• x* MESSAGE TO * •••••••• X* WAIT • _ *. _ * OPERATOR *. *
* * * II' * * ***.* •• ********
** •••••• ****** •• * ***.* •• ********** *-*.*************

o 0
* EXIT *
o •

*******.*****.*
TO

OISPATCHeR

Charts 77

• Chart 17. CHECKPOINT (SVC 63) Control Flow
(Described in Chapter 9)

78

*****"2********** ,.. ****A4********** *****A5**********
****Al********* *IGC0006C '" **** '" BUILD '" *IGCOS06C '"

'" '" *-*-*-*-*-*-*-*-* '" '" * CHECKPOINT '" *-*-*-*-*-*-*-*-*1/0
*Er-.lTRY FROM SVC * •••••••• x* * * A4 "' •••• X* HEADER RECORD * •••••••• X* * ••••
* SL IH '" * HOUSEKEEPI NG '" '" '" '" (CHR) '" * aUIESCE USER tERR.

*************** '" * ***************** •• "'''' '" '" '" I/O '"

x .-.
82 *.

.* ARE *. ****83*********
•• CHECKPOINTS •• YES '" TO * *. SUPPRESSED .* X* EXIT ROUTINE *
. . '" (SVC 3) '"

*. .. '" *************** * ... * * NO

x
• *.

RE:.TURN
TO INTERRUPTED
ROUTINE

C2 *. *****C3**********
• * *. *OP£N *

• * IS *. NO *-*-*-*-*-*-*-*-*
. CHECKPOINT . .••..... X* OPEN *

.DATA SET . *CHECKPOINT OATA*
*.OPEN • * * SET *

* •• * ***************** * YES

. .
••••••••••••••••••••••••• X •

• *. X
*****01********** 02 *. *****03**********
*IGCOI06C * ... *. * GET *
--*-*-*-*~*-*-* NO.* IS *. * MAIN STORAGE *
* TEST FOR *x ••••• : ••• *. CANCEL .*X •••••••• *ANO INITIALIZE *
* ERROR * *. REQUE STED. * * WORK AREA *
* CONOlTIONS * *..* * *
***************** * •• * ***************** * YES

x .•.
El *.

• * *.
• * *. NO •

. ANY ERRORS . •••••••••••••••• X.
. . *. .*

* •• * • yes

X
*****F2 **********
*IGC0206C *

1/0*-*-*-*-*-*-*-*-*

***************** *****************

X
*****85**********
*IGCOA06C "' ..
--*-*-*-*-*-*-* I/O.
'" WRITE * ••••
'" CHECKPOINT *ERR.
'" HEADER RECORD '"

• *.
C5 * •

.* * •
YES .* *.

•••••• *.END-DF-VOLUME.*
*. OCCURRED • *

*. . * * •• *
• NO

X
*****05**********
*IGCOD06C *.
--*-*-*-*-*-*-*1/0.
* WRITE DATA * ••••
*SET OESCRI PTOR *ERR.
* RECORDS *

x . -.
E5 * •

• * ••
• YE S •• * •
• X •••• *. END-OF-VOLUME. '*

. OCCURREO • '
*. . *

* •• *
• NO

X

• X ••••••••••••• -••• .- BUILD *X •••••••••••••••••• ~ ••••••••••••••••••••••••

*.***F5* *********
*IGCOF06C *.'
--*-*-*-*-*-*-* I /0. * WRI TE CORE * ••••
* IMAGE RECORDS *E:.RR.
AND SVPV RECORD
.************

ERR* I/O BLOCKS" *
* READ JCT *

x
• *. • YES X .*. . * •

G2 *. *****G3********** 0:;4 *. G5 *.
**** .* *. *IGCON06C * .* IS *. .* *.

* * NO. * IS *. * ... *-*-*-*-*-*-*-* NO .*CHECKPO INT *. YE S • .- *.
* A4 *X.' ••• *. CANCEL .* * *X •••••••• *. DATA SET ON .*X •••••••• *.END-DF-VOLUME.*
* * *.REQUESTED.* * RESTORE USER * X *. TAPE .* *.OCCURRED .*

**** *..* * liD * "'..* *..*
* •• * ***************** * •• * * •• * * YES

• x •
• X ••••• 10 ••••••• ' ••••••••••••••••••••••••••••••••••••••

x .*.

• * NO

*****H1********** H2 *. *****H4**********
*IGCOQ06C * .* *. *IGCOS06C *
--*-*-*-*-*-*-* .* CHKPT *-. NO *-*-*-*-*-*-*-*-*
* * •••••••• x*. GErMAIN FOR .* .• --................................... X* WRItE CHKPT *
* EXIT ROUTINE * *.WORK AReA.* x * MESSAGE TO *
* '" *..* • OPERATOR *
***************** * •• * ***************** * YE S

x .•.
J2 *. *****J3**********

.* *. '" WRITE JOB *
.* BPAM * .. NO * CONTROL TABLE *

. CHECKPOINT . •••••••• X* TO JOB QUEUE. *
.DATA SET . * FREEMAIN WORK *
.. * AReA *

* •• * ***************** * YES X

X
.*K2 *******
*STOW *

--------- . * STOW * ••••••••••••••••••
* CHECKPOINT *
* FNTRY *

.* •
J4 *. *****J5**********

.* CHKPT *. *CLOSE * .* OPENED *. YES *-*-*-*-*-*-*-*-*
. CHECKPOINT X* CLOSE *

.DATA SET . *CHECKPOINT DATA*
.. * SET *

* •• * ***************** * NO

· . • x

****K4********* * TO *
* EXIT ROUT!Nt *
.- (SVC 3) *

RETURN TO
INTERRUPTED
ROUTINE

• Chart 18.

•••• At •••••••••

• • .eNTRY FROM SVC *
• SL IH • •••••••••••••••

X

RESTART (SVC 52) Control Flow
(Described in Chapter 9)

ALSO POSITION
CHECKPOINT DATA
seT TO FIRST
CORE IMAGE RECORD

NOTE AN ERROR IN ANY
MODULE CAUSES XCTL
TO THE RESTART EXIT
MODULE FOR ABEND

••••• SI.......... *** •• e2 •• ***.**** •••• *S3*.*.***... • •••• S4 •••••• ***. *.*.*85******.**.
*IGC00058 • *IGC01058 • *IGC05058 • *IGCOG05B * *IGCOI058 •
--*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* .-*-.-.-*-*-*-*-*
.GETMAIN STORAGE ••••••••• x. BUILD CONTROL * •••••••• X. READ C[R'S * •••••••• X. CREATE ••••••••• x* PROCESS *
.SUILD DeB OPEN. .SLOCKS, CALCU- • • AND SUR INTO * *[/0 BLOCKS FROM. *JFCB EXTENSIONS.
*CHICPT DATA seT. • LATE BUFFERS. • • STORAGE. • JFCS'S.. •
.*.* ••••• * •• - •• ***_.*._.****-* *_ •• **._-***.*.** **-*****.******** .* •• *** •• **.*****

x
. *. • *.

*****Cl.*******.* C2 *. *****C3***** ••• ** C5 *.
• USER * .* *. .IGCOK05B * •• ANY *.
* NON-STANDARD * YES .* *. *-*-*-*-*-*-*-.-* YES •• NON-DIRECT ••
* TAPE LABEL *x •••••••••• NON-STANOARD •• x ••••••••• ADJUST DEB'S. *x •••••••••••••••••••••••••••••••••• *. ACCESS DATA .*
* ROUTINE. •• LABELS •• • ISSUE MOUNT * *.SETS OPEN.*
* * *..* * REQUESTS • *. .*
•• * •••••• ** •• *... • •• * ***********.****. * •••

* NO * NO

. .
••••••••••••••••••••••••• x.

x .•.
D2 *. ****.03**********

.* *. *IGCOM05B *
•• RESIDENT •• YES *-*-*-*-*-*-*-*-. •

*.DIRECT ACCESS •••••••••• x. ADJUST DES'S,. .x •••
*.OATA SETS.. * TIOT FOR O/A *
.. * DATA SETS •

•• • * ****** ••• *.* •• * ••
• NO

x
x .*.

*****E2 •• ******** E3 *.
IGCOL05B. . ANY *.
--*-*-*-*-*-*-. YES .*NON-DIRECT *.
* WRITE TAPE *x •••••••••• ACCESS DATA .*
*HEADER LABELS, * *.SETS OPEN.*
• PRIME 8UFFERS * *._*
•• * •••• *.**.***.. *. .*

• NO

x .*. x .*.
F2 *_ **.**F3*.*.****** F4 * •

• * ANY *. *IGCON05B * .* *_
.* DIRECT *. YES *-*-*-*-*-*-*-*-* .* *. YES

. ACCESS DATA . •••••••• x* CHECK FOR * •••••••• X*. DEFERRED .* ••••
.SETS OPEN. *DELt::TION OF D/A* *. RESTART ••
.. lit DATA SETS * *...

* •• * ** •••••• *.*.* •• *. * •• *
.~ .~

· . • x ••• , •••

x .*.
*.***G2.*****.*.* G3 *. *****G4.****.****
IGCOPOSB. . ANY *. *IGCOQ05B *
--*-*-*-*-*-*-* YES .*NON-DIRECT *. *-*-*-*-*-*-.-*-*.
* POSITION *x •••••••• *. ACCESS RES •• *x......... PERFORMS *x •••
*TAPE DATA SETS * •• DATA SETS.* * NO SERVICE IN *
* * •• OPEN .* * PCP *
.***.*.**.. *. .* *.***IIt***********

• NO

x .*. x .*.
H2 •• .****H3********** H4 *. .****H5**********

.* ANY *. *IGCORCS8 * .* *. *PARTIAL RELEASE*
.* DIRECT *. YES *-*-*-*-*-*-*-*-* .*HAS OUTPUT *. YES *-*-*-*-.-*-*-*-*

*. ACCESS RES •• * •••••••• X* RECONCILE * ••.••••• X*.DATA SET BEEN.* •••••••• x* RELEASE DATA *
*.DATA SETS.. * DIRECT ACCESS * *.ENLARGED .* * ADDED SINCE *

.OPEN . * DSCB. DEB. * *..* *CHKPT WAS TAKEN*
* •• * *****.**.** •• **** * •• * ***.**********-**
.~ .~

· . • X •••

x •••
*****J2********** *****J3********** J4 *.
*IGCOTOS8 * *IGCO¥05B * .* *.
--*-*-*-*-*-*-* *-*-*-*-*-*-*-.-* .* *. NO • * •••••••• X. RESTART EXIT. * •••••••• X.. ERROR. .* •••.•••••.•.••..•.
* RESTORE USER • *WRITE ERROR OR * *. .*
* I/O * *SUCCESS MESSAGE* *..*
****.** •• *.*.*.** *.*************** *. .* * YES

X
****K4*********

• TO * * ABEND ROUT I NE * * (5VC 13) *
*******.*.****.

• X
****K5********* * TO * * EXI T RDUTI NE * * (SVC 3) *
********-*-***­

RETURN TO
INTERRUPTED
PROGRAM

charts 79

Chart 19. Initial Program Loader Control Flow
(Described in Appendix A)

PREL 1M INARY--------------­
OPERATIONS AND CONDITIONS-

.A 1 ****** .SYSTEM LOCATED ,.
,. ON A O[RECT- ,.
... ACCESS DEV ICE ..

- OPERATOR X

*****81 ********** .SELECTS SYSTEM ..
,. RESIDENCE ,.
.. DEVICE WITH *
* LOAD UNIT *
,. SWITCHES ,.

x
*****C 1 .:fI** •• *.**
.. SETS ADDRESS ...
*COMPARE SW ITCH ..
,. IF OTHER THAN *
.PRIMARY NUCLEUS*
.. TO BE LOADED *

X
*****01**********
• * ,. PRESSES LOAD ..
,. ~EY ON THE *
*SYSTEM CONTROL ,.
* PANEL *

- HARDWARE X
*****E 1*********.
,. SYSTEM RESET ,.
• READS IPL CTRL ,.
.. RCD FROM ,.
* INPUT OEV ICE '"
,. INTO LOC 0 ,.

IPL COIICTROL:
RECORD x

*****F 1********** * •
,. READS IPL *
.BOOTSTRAP INTO *
* MAIN STORAGE *

* * *****************

IPL •
BOOTSTRAP X

*****Gl**********
*LOCATES IPL ON *
* SYSTEM ..
* RESIDENCE AND *
* READS IT INTO *
* MAIN STORAGE *

IEAIPL •
IEASTAR 1 X

*****Hl**********

• * * CLEARS *
* GENERAL *
* REGISTERS * · . *****************

.. .

* * * B2 * • *

IEAMAIN X
*****82**********
* •
CLE::ARS FLOATlNG
POI NT REGI STERS
• * . .

.*.
C2 *****C3**********

.* *. * MACHINE HAS *
.* PROGRAM *.o YES * NO FP REGS. *

*.1 NTERRUPTt ON .. * •• .o • .o.o.o.o X*RETURNS CONTROL*
*. • * * TO tEAPC~ET *

*.o • * * *
* • .o* *****************

• NO

IEAPCRET X
*****02**********
*CHANGES "lEW PI *
PSW TO tEAROUNO •
* TO HA"IDLE *X.o .o.o.o •• .oo
STORAGE-CLI:' ARED
* I NTERPUPTI ON *

FOR tEAIPL MODULE

• X .. .

IEALOOPS X • *.. .o;. NO
*****E2********** E3 *. E4 *.
CLEARS 256 BYTE .* HA~ *. .* *.o
* BLOCK OF MAIN * .* COUNT REG *. NO .* PROGRAM * •
*STORAGt:: R(,:YOND * •••••••• X*. ~ETUKt\lED .* •••••••• X*.INTERRUPTION.* * IPL pRG AND * *. TO ZERO .o* *. .*
*COUNTS IN Rt:.GS * *.o.* *..*
***************** * •• * * •• *

* YFS * YF. S

IEAMXLOC X
*****F3**********

* * * MAXIMUM MAIN *
* STORAGE SIZE *
* ASSUMED *

* * *****************

IEAROUNO X
*****F4**********
* ROUNDS OFF *
* MA IN STORAGE *
* SIZt: IN THE *
*COUNT REG I 5TER * . .

. .
.X ••••••••••• .o

X
*****G3**********
* CHANGeS NEW * * PI P~W TO *
* I EAPCKI7:Y FOR *
* PION seT >I<
* STORAGE KEY *

IEAKYLP X
*****H3**********
* •
* SETS 5TORAGE * * KEY OF MAIN *
>I< STORAGE 1'" 0 *
*SUPERV ISOR KEY *

x
• * •

Jl *. *****J2********** J3 *. *****J4*******>I<**

80

.* HAS *. * APPENDS BYTE *
.* ALTERNATE *. YES *OPERATOR KEYED *

.NUCLEUS BEEN . •••••••• X* INTO LOC 8 TO *
. CHOSEN . * STANDARD *
.. * NUCLEUS NAME *

* •• * *****************
• NO

x X
*****K 1********** *****K2**********

* * * * *USES ASSEMBLED * * SETS NEW PI *
NUCLEUS * •••••••• X* PSW TO POINT *

NAMe * * TO I EAPCRET *

* * * * ***************** *****************

x
**** . .

* 62 * . .

.o* *. *MACHINE HAS NO *
.* PROGRAM *. YES *PROTECTION KEyS*

.INTERRUPTION . •••••••• X*OR ARE ALL SET *
. . *TO TOP OF MAIN *
.. * STORAGE *

* • .o* *****************
* NO

I EAPCKEY X
*****K3**********
*CHANGES PI NEw *
* PS\!j TO GIVE * •
* TYPE 9 ERROR *X.o •• .o ••••• .o •••••••
* AND HALTS ON *
* ANY MORE PI *

x
**** . .

* A5 * * •

**** . .
* A5 * • *

X
*****A5**>I<*******
* •
* READS SVL AND *
* THEN VTOC TO *
*LOCATE NUCLEUS *
* PDS *

tEACOMPR X
*****85**********
* READS IN AND *
* SEARCHES PDS *
* DIRECTORY FOR *
* NUCLEUS *
* MEMBER NAME *

tEARETl X
** * **cs*** * * *** **
* READS THE *
* TRANSLATION *
* TABLE AND *
* SCATTER TABLE *
* BEHIND IPL *

X
*****05**********
* BUI LDS 51 ZE. *
* ADDRESS AND * * RLF TABLI:.5 * * FROM TT /ST *
* DATA *

IEAADDRS X
*****E5**********

MOV,::S PART OF' *
IPL NOT YET *
EXECUTED TO *
TOP OF MAIN *

* STORAGE *
***** * * **** ******

IEARDt X
*****F 5******** **
*READS TXT I NTD * * LOWER MAt N *
* STORAGE. N] P *
*1::5DI0=1 AT TOP *
* OF NUCLEUS *

IEARDRC2 X
*****G5**********
* READS TXT *
CONTROL RECORDS
I NTO I PL BUFFER
*THEN MOVES RLD *
*DATA BELOW IPL *

lEA TYPE X
*****H5**********
* WHEN LAST *
*NUCLEUS RECORD *
* RE:AD,UPDATES *
*ADDR CONSTANTS *
* BY RLF TABLE *

X
*****J5**********
* LOADS MACHINE *
* 51 ZE I N A * * REG I STER AND
* GIVES UP
*C ONTROL TO NI P *

X
****K5*********

* * * NIP * . .

SEE CHART 20

• Chart 20. Nucleus Initialization Program control Flow
(Described in Appendix B)

_ •• *Al •••••••••

* * .FROM IPL (CHART.
... 19) ...

X IEAANIPO IEUCBO
* •••• Sl ••• ******. *****S2.******... ***.*S3********** .****S4********** *****85*********.
... SAVE THE"'''' * READ STANDARD ...
• Tee PROTECTION'" ... STORE END'" ... INITIALZE'" ... INITIALIZE'" ... VOL.UME LABEL ...
... KEV. seT THE * •••••••• X* OF NUCLEUS IN * •••••••• X* BOUNDARY BOX * •••••••• X*FREE AREA QUEUE* •••••••• x* FROM SYSTeM ...
"'Tea PROTECTION'" ... THE CVT"'''' ELEMENT'" ... RESIDENCE ...
... KEY TO ZERO VOLUME ...
•••• *.*********** ******.********** ** •• ****.*****.*. .*******.* •••• *.* ** •••••• **** •••••

IEAUCBB X
****.C4******.*.. *****C5.*.******_
... DETERM INE *... ...
"'uea ADDRESS FOR* * READ *

•• * THE SYSTEM *X •••••••• *VTOC Dsce DATA *
* RESIDENCE * * *
* DEVICE * * *
***************** *****************

.X •••••••••••.•• : ••••••••••••••••••••••••••••••••••••••

X IEASTRIO
*****01********** *****D2~********* *****03********** *****04**********
* SET NAME * * BAL TO A. * * * *
OF DATA SET (TO * SUBROUTINE TO * * INITIALIZE * * BuILD AND •
* BE OPENED) IN * •••••••• X* READ THE PDS * •••••••• X*REQUIRED FIELDS* •••••••• X* INITIALIZE *
* THE CHANNEL * * DIRECTORY OF * * IN THE LOGREe * *SYS1.SVCLIe OEB*
* PROGRAM. * THE DATA SET • * DEB * * *
***************** ****************. ***************** *****************

X
IEAT IMER .*.

*.***E3********** E4 *. * * .* IS *. * SEND A * NO.* TIMER *.
*MESSAGE TO THE *X •••••••• *. ENABLED AND .*
* OPERATOR * *. WORKING .*
* * *..* ***************** * •• *

* YES

SVXINIT X X
*****Fl********** *****F2********** *****F3********** *****F4********** * * * * * oaT A I N * * * *USE BLDL MACRO * * CONVERT SVC * * TRANSIENT SVC * * SET *
* TO GET DATA .X •••••••• * NUMBER INTO 8 .X......... NUMBER FROM *X •••••••• * TIMER TO 6 *
EXTENT FOR THE. .BYTE SVC MEMBER * RELOCATION. * HOURS *
* SVC * * NAME • • TABLE *. *
*** •• ************ ***************** **********.****** ****.************ x

i . ~
••• SVXFOUND .*.

Gl *. .****G2********** G3 *. *****G4*********. .****G5**********
.* *. * MOVE * .* END *. * * * APPEND *

.* IS SEARCH *. YES *TTR AND LENGTH * .* OF *. YES * BUILD AND * * OPTIONAL *
. BY BLDL . •••••••• X* OF TRANSIENT * •••••••• X*. RELOCATION .* •••••••• x* INITIALIZE * •••••••• X*ROUTINES TO THE*

SUCCESSFUL. * SVC INTO TTR * X *. TABLE .* * SYS1.LINKLIB * • NUCLEUS *
.. * TABLE * *..* * DEB(S) * * *

* •• * ***************** *. .* ***************** *********.*******
• NO *

X
*****Hl**********
• * * SEND A * •
*MESSAGE TO THE * ••••••••••••••••••••••••••••••••
* OPERATOR *
* * *****************

IEANIPI X
*****H4********** *****H5**********
• * * * * RESTORE * * INITIALIZE *
* THE TCS *X •••••••• * DYNAMIC AREA *
*PROTECTION KEY * *WI TH PRB + XCTL*
* * * CODE *
***************** *****************

x
.*.

J4 *. *****J5**********
.* *. * * .* *. NO *SET STORAGE KEY*

. PROTECTION . •••••••• X* FOR EACH 2048 *
. KEY = . *BYTE (2K) BLOCK*

.ZERO . * *
* •• * ***************** * YES

. .
••••••••••••••••••••••••• X.

X
****K5*********

• * * TO DISPATCHER *
• *

SEE CHART 02

Charts 81

APPENDIX A: INITIAL PROGRAM LOADER (IPL)

The Initial Program Loader loads the
nucleus and the Nucleus Initialization Pro­
gram into main storage. The operator
mounts the system residence volume on a
direct access device and presses the LOAD
key causing the hardware to read the IPL
control record from cylinder 0, track 0 of
the system residence volume into location 0
of main storage. The IPL control record
loads the bootstrap record (a chain of
CCWs) at an address greater than the size
of IPL so that the bootstrap record will
not be overlayed by IPL instructions. The
bootstrap record then loads the IPL control
section text (starting at location 0) and
passes control through an LPSW instruction.
For a more complete description see the
publication IBM System/360 Operating Sys­
tem: Initial Program Loader and Nucleus
Initialization Program, Form Y28-6661.

The IPL program prepares for loading the
nucleus by:

• Clearing main storage and machine reg­
isters, and determining main storage
size.

• setting the storage key of wain storage
to the supervisor protection key, in
systems with the protection feature.

• Determining the nucleus to be used.

• Finding the selected nucleus on the
system residence volume.

• Assigning main storage addresses to the
nucleus.

• Relocating the unexecuted portion of
IPL.

When all preparations for nucleus load­
ing are made, IPL:

• Loads the nucleus and the
Initialization Program.

• Establishes addressability
nucleus control sections by
address constants.

Nucleus

among the
resolving

When the Initial Program Loader process­
ing is completed, IPL passes control to the
Nucleus Initialization Program.

IPL ORGANIZATION

IPL is made up of two records and eight
subroutines:

82

• IPL Control Record This 24-byte
record, consisting of an IPL-PSW and
two IPL-CCWs, is loaded into main stor­
age at location zero by the hardware
circuitry when the operator presses the
LOAD key. This record and the IPL
bootstrap record are located at track
zero, cylinder zero of the system resi­
dence device; the IPL subroutines are
contained in one record elsewhere on
the system residence device.

• IPL Bootstrap Record -- This record,
consisting of a chain of ccws, is
loaded into main storage at a location
specified by the IPL control record.
The IPL bootstrap record loads the IPL
subroutines into main storage at loca­
tion zero.

• Nucleus Selection (IEACOMPR)
SUbroutine selects the nucleus
loaded.

-- This
to be

• Hardware Initialization (IEAMAIN)
This subroutine clears rr.ain storage,
machine registers and, where applic­
able, initializes the storage keys.

• Nucleus Location (IEACOMLP) This
subroutine locates the nucleus on the
system residence device.

• Control Section Data Organization
(IEAHOOP) This subroutine corr.putes
and sequentially arranges nucleus con­
trol section data so the nucleus can be
loaded into main storage.

• IPL Relocation (IEAADDR) -- This sub­
routine moves the unexecuted part of
IPL to the upper end of main storage to
make room for the nucleus.

• Nucleus Load (IEALOAD)
tine loads the nucleus
main storage.

This subrou­
and NIP into

• RLD Relocation (IEARELOC) -- This sub­
routine relocates RLD items within the
nucleus text read into main storage.

• Common I/O {IEASTRIO> -- This subrou­
tine, used by IEACOMLP and IEALOAD,
issues and tests for the successful
completion of START I/O operations.

IPL CONTROL INFOR~~TION

NIP and the nucleus are combined into
one load module and written on the system

residence device by the
during system generation.
with the fixed name of this
module, but not with its
location of its DSCB within

linkage editor
IPL is supplied
"nucleus" load
location or the
the VTOC.

The structure of the nucleus load module
on the system residence device is the
standard structure described in the publi­
cation IBM System/360 operating system:
Linkage Editor, Program Logic Manual. That
is, its records and text are ordered as
follows:

• composite ESD Record (CESD).

• Scatter/Translation Record.

• Control Record.

• Text Record (TXT).

• Control/RLD Record (here
RLD data on this type of
on the ~resence of RLD
previous text).

• TXT.

• Control/RLD Record.

• TXT.

and elsewhere,
record depends
items in the

• and so on, until the end of the load
module.

The scatter/translation record is made
up of the translation table and the scatter
table. The translation table corresponds,
entry for entry, to the CESD, where each
entry represents one control section
(CSECT) maje up of a control (or control/
RLD) record and TXT. Entry 0 of both the
translation table and the scatter table is
a dummy entry containing zeros. Entry 1,
corresponding to an ESDID of 1, represents
NIP, which is the first CSECT of the
nucleus load module. The translation table
contains 2-byte pointers to the 4-byte
entries in the scatter table.

IPL TABLES

Since the order of nucleus CSECTs on the
system residence device is not fixed until
the system is generated, IPL organizes the
information available for the CSECTs before
loading the text within CSECTs into main
storage. IPL organizes the data by creat­
ing three tables:

• SIZTABLE -- a table of CSECT sizes.

• ADRTABLE -- a table of addresses where -----
the CSECTs are to be loaded.

• RLFTABLE
factors.

a table of relocation

These tables are arranged in the same
sequence as the CSECT entries in the scat­
ter table and have 4-byte entries, making
each table the same length as the scatter
table.

To make up the SIZTABLE, IPL performs
the following:

• Indexes the scatter table by the con­
tents of the translation table entry to
determine the address of the scatter
table entry corresponding to a CSECT.

• Loads in a register the assembled ori­
gin "0" of the CSECT from the scatter
table entry.

• Loads in another register the assembled
origin "01" of the next CSECT from the
consecutive entry in the scatter table.

• Computes the size
subtracting origin
"01."

of
"0"

the CSECT by
from origin

• Stores the size in SIZTABLE in a posi­
tion relative to the CSECT position in
the scatter table.

The size of the CSECT whose linkage­
editor assigned origin is available in the
last 4-byte entry of the scatter table is
computed by subtracting origin no" from the
size of the nucleus which is available in
the PDS directory and stored by IPL in the
first word of the SIZTABLE which IPL builds
behind the scatter table.

To make up the ADRTABLE, IPL performs
the following:

• Stores the address where the
CSECT is to be loaded (assumed
location O) in the same position
ADRTABLE as the CSECT occupies
scatter table.

second
to be
in the
in the

• Computes
CSECT by
CSECT to
CSECT.

the address for the third
adding the size of the second
the address of the second

• Stores the address for the third CSECT
in the same position in the ADRTABLE as
the CSECT occupies in the scatter
table.

• Repeats the second and third steps
above for each ordered CSECT. (Ordered
CSECTs are those which must be loaded
first and in the order in which they
appear in the translation table.)

Appendix A: Initial Program Loader (IPL) 83

• stores the addresses for non-ordered
CSECTs, after computing them as they
are encountered sequentially following
the last of the ordered CSECTs.

The RLFTABLE is similar in structure to
the SIZTABLE and ADRTABLE. Its entries are
computed by subtracting the linkage-editor
assigned origin from the address at which
the CSECT is to be loaded.

IPL passes to NIP in registers:

• A pointer to SIZTABLE

• A pointer to ADRTABLE

• The number of entries in each table.

IPL CONTROL FLOW

As shown in Chart 19, IPL begins with
several operator actions and prior con1i­
tions (see the publication IBM System/360
Operating System: Operator's Guide, Forro
C28-6540). The operator selects the system
residence device with the LOAD-UNIT
switches and presses the LOAD key. The
hardware circuitry resets the CPU, locates
track 0, cylinder 0, and loads the IPl
control record into location O. The con­
trol record loads the IPL bootstrap record,
which, in turn, loads IPL and passes con­
trol to the first subroutine via an LPSW
instruction. IPL is executed disabled for
all interruptions except program interrup­
tions.

IPL clears storage and registers, se­
lects the nucleus or allows the operator to
select a non-standard nucleus, sets storage
keys where applicable, searches the VTOC
and locates the data set containing the
nucleus load module. IPL loads the trans­
lation table and the scatter table into
main storage, relocates part of IPL (if
necessary), calculates relocation con­
stants, and loads the nucleus load module.
IPL passes control to NIP by branching to
an LPSW instruction in the nucleus.

NUCLEUS SELECTION

This subroutine (IEACOMPR) selects the
nucleus for loading or allows the operator
to choose a different nucleus, by using the
ADDRESS-COMPARE switch and the DATA switch.
The procedure for operator-selection of the
nucleus is given in the publication IBM
System/360 Operating System: operator'S
Guide.

84

HARDWARE INITIALIZATION

This subroutine (IEAMAIN) sets correct
parity in the:

• General registers.

• Floating pOint registers, if present.

• Main storage beyond IPL.

In addition, IEAMAIN sets storage keys
to the supervisor protection key.

Program interruptions will occur while
setting storage keys in machines without
the protection feature, or while correcting
parity in machines without floating point
registers or without maximum main storage
capacity. These interruptions are auto~at­
ically handled by IEAMAIN. Further program
interruptions are unexpected, and this sub­
routine places the machine in a wait state
if they occur.

NUCLEUS LOCATION

This subr.outine (IEACOMLP) searches for
the location of the specified nucleus name
on the system residence device and posi­
tions the read head of the system residence
device at the first text record of the
nucleus. IEACOMLP takes the following
steps to locate the nucleus:

• Picks up the system
address stored at
hardware circuitry.

residence device
location 2 by the

• Reads the standard volume label to find
the VTOC DSCB address.

• Reads the VTOC OSCB data to determine
the number of tracks per cylinder on
the system residence device.

• Searches the VTOC to find the DSCB for
the partitioned data set (POS) name.

• Seeks the track where the PDS directory
starts.

• Searches the directory for
containing the name of the
using the SEARCH EQUAL
command.

a record
nucleus,

HIGH KEY

• Reads the PDS directory record.

• Determines the address of the scatter
translation record on the system resi­
dence device from the PDS directory
record.

• Finds the scatter
and reads it into
IPL.

translation record
main storage above

High Address High Address
r--, r--,
BIOI AI Relocation Factor Table I
el I I f~--~
f I Cleared I tl Address Table I
01 storage I e~--~
rl I I rl Size Table I
el 0 I ~--~
t--~ I Scatter List I
I Relocation Factor Table I t--~
t--~ I Translation Table I
I Address Table I t--~
t--~ I Relocated I
I Size Table I I Portion of IPL I
t--~ ~--~
I Scatter List I I 0 I
~--~ I I I
I Translation Table I I I I
~--~ I Available I
I I I Main Storage I
I IPL Program I I I I
I I I 0 I OL __ J OL __ J

Figure 28. Storage Layout Before and After IPL Relocation

The nucleus location subroutine uses the
common I/O subroutine, IEASTRIO, when read­
ing the standard volume label, VTOC, etc.,
from the system residence device into main
storage. Before using the common I/O sub­
routine, IEACOMLP sets up a channel program
with an appropriate chain of CCWs to SEEK,
SEARCH, TIC and READ.

CONTROL SECTION DATA ORGANIZATION

This subroutine (IEfu~OOP) computes the
address for loading the ordered CSECTs and
also computes the relocation factor and
size of each CSECT. This data is arranged
in tables SIZTABLE, ADRTABLE, and
RLFTAELE -- for use by the nucleus load
sunroutine. The tables and the procedures
1EAHOOP uses to make them are described
under the earlier heading, "IPL Tables."

IPL RELOCATION

This subroutine (IEAADDR) relocates the
unexecuted portion of IPL and its tables
into the numerically high end of main
storage so that IPL can load the nucleus
text starting at location zero. After the
relocation is complete, it moves zeros into
the storage it occupied before relocation
(see Figure 28).

NUCLEUS LOAD

This subroutine (IEALOAD) loads the nu­
cleus into main storage, placing the relo­
catable modules into main storage in the
order of their position in the translation

table. IEAANIPO, the Nucleus Initializa­
tion Program, must be the first CSECTi it
is loaded into the upper end of main
storage just below the relocated portion of
IPL. 1EAAIHOO must be the second CSECT and
is loaded into location zero. 1EAAIHOO
includes permanent storage assignments, the
task control block, first level interrup­
tion handlers, the type 1 SVC exit routine,
the dispatcher, the exit effector, and the
input/output supervisor. Unless INSERT
cards are used for each nucleus CSECT
prepared by linkage editor, the order of
the loading of the remalnlng relocatable
nucleus CSECTS will vary. IPL sets a
buffer of 256 bytes in 1PL for reading
control/RLD records, and performs the fol­
lowing actions:

• Reads a control/RLD record into the
buffer and interrogates the record.

• Picks up from the control/RLD record
the ESD1D of the text record that
follows the control/RLD record.

• Determines the address, L, at which the
text record of the CSECT is to be read,
by adding the relocation factor from
the RLFTABLE to the assigned origin of
the record.

• Reads the TXT record of the CSECT at
address L.

• Adds the number of text bytes read, T,
to address, L, to compute the address
where the next text record of the same
CSECT is to be read. Sets L = L + T.

Appendix A: Initial Program Loader (IPL) 85

• Reads into the buffer the control/RLD
record following the text record.

• Builds a table of RLDs by moving RLD
information bytes from the control/RLD
record and keeps a count of the RLD
bytes moved into the RLD table above
NIP.

• Repeats the above steps until all the
records of the nucleus are read into
main storage.

The nucleus load subroutine uses the
common I/O subroutine when reading the CCW,
control/RLD and TXT records of the nucleus
load module from the system residence
device into main storage. Before using the
common I/O subroutine, IEALOAD sets up a
channel program with an appropriate CCW to
READ the particular record.

RLD RELOCATION

This subroutine (IEARELOC) scans the RLD
table created by IEALOAD and relocates the
load constants in the nucleus text, using
relocation factors s.tored by IPL in the
RLFTAELE. At the completion of lEARELOC,
IPL's work is done and control is passed to
NIP. Figure 29 shows the layout of main
storage when IPL passes control to NIP.

COMMON I/O

This subroutine (IEASTRIO), used by nu­
cleus locate and nucleus load, issues and
tests for the successful completion of
START I/O operations. Nucleus locate and
nucleus load set up the CAW and CCWs and
then branch and link to lEASTRIO. After
execution of IEASTRIO, control is returned
to the IPL subroutine that branched to it.

Error conditions encountered during the
execution of lEASTRIO are indicated to the
operator by the WAIT light, and the error
type is stored in the address field of the
WAIT PSW.

86

The operator can retry IPL when the WAIT
light is on. If IPL is unsuccessful after
a few trials, the operator displays the
address field of the PSW to determine the
error type, and informs the customer
engineer. The ten error types are shown in
Figure 30.

High Address
r--,
I RLFTABLE I
~--i
I ADRTABLE I
~--~
I SIZTABLE I
~--~
I Scatter List I
~--~
I Translation Table I
~--i I IPL Program Instructions I
I I
~--i
I I
I NIP Program Text I
I I
~--i
10 I
II I
I I Available Main Storage I
II I
10 I
~--i
I I
I I
I I
IUsed RLD Information I
I I
I I
~--~
I I
I Loaded Nucleus Text I
I I
I I
I I OL __ J

Figure 29. Storage Layout at End of IPL
Program Execution

r------T-----------T--,
\~rror IBit Pattern \ Meaning I
I Type I Displayed I I
~------+-----------+--~

1 00000001 1/0 is not operational.

2

3

4

5

6

17

18

19

00000010

00000011

00000100

00000101

I
00000110 I

I
I
I
I
I
I

I/O operation is not initiated. CSW is stored. Unit is not busy.

I/O operation is not initiated. CSW is not stored. Channel is
not busy.

During TEST I/O. Channel is not busy. CSW is not stored.

During TEST I/O. Unit check condition is indicated. Location
X'4C' contains the address of the ccw causing the original unit
check, and X'S4' contains the first four sense bytes.

During TEST I/O. Any of these
Interface control check.
Channel control check.
Channel Data check.
Channel chaining check.
Program Check.

conditions are indicated:

00010111 I During START 1/0. Unit check on a sense coromand is indicated.
I

00011000 I Available space for reading RLD records has been exceeded.
I

00011001 I Unexpected program interruption. IPL damaged.
I

I FF I 11111111 I No IPL on this direct-access device. I L ______ ~ ___________ ~ __ J

Figure 30. IPL Error Types

~ppendix A: Initial Program Loader (IPL) 87

APPENDIX B: NUCLEUS INITIALIZATION PROGRA~ (NIP)

The Nucleus Initialization Program (NIP)
consists of several subroutines, each of
which performs an initialization fUnction
required by the resident portion (nucleus)
of the primary control program including:

1. Opening the SVC and Link libraries,

2. Setting the protection key
storage (in systems with the
storage protection feature),

of main
optional

3. Placing the addresses of the upper and
lower boundaries of the dynamic area
into the boundary box.

The NIP sub-routines are packaged in one
non-resident module, processed by the link­
age editor together with the nucleus
modules. NIP is loaded into main storage
immediately before the relocated portion of
the IPL program (see Figure 29). NIP is
entered from the IPL program and, on com­
pletion, passes control to the dispatcher,
after which it may be overlayed by the
processing programs.

NIP operates partially under its own
stand-alone input/output routine and under
system routines including the I/O supervi­
sor. NIP has its own TCB, RB and boundary
box pre-assembled within NIP code. For
more complete information, see the publica­
tion: Initial Program Loader and Nucleus
Initialization Program.

The NIP module initializes the follow­
ing:

88

• Communication Vector Table (CVT).

• Dynamic Area.

• Boundary Box.

• Free Area Queue Element.

• SYS1.SVCLIB, SYS1.LINKLIB, SYS1.LOGREC
DEB.

• SVC Table Extension (optional).

• Protection Key (optional).

• Timer (optional).

• Resident BLDL Table (optional).

• Resident Access
(optional) •

Method Routines

• Resident Type 3 and 4 SVC Routines
(optional) •

• Resident Job Queue (optional).

NIP FUNCTIONS

NIP control flow is shown in Chart 20.
When entered from the IPL program, NIP
saves the address of the system residence
device, stored in register 10 by the IPL
program. It rounds the address of the end
of nucleus up to a double-word or 2048 byte
boundary and stores this value in the CVT
for use by the system environment recorder
(SERO).

To initialize the dynamic area, NIP
moves a PRB and XCTL code (which have been
pre-assembled within NIP) to the beginning
of the dynamic area. NIP then relocates
the address constants within the PRB and
XCTL code. When this XCTL code receives
control (at the completion of NIP), it
causes control to be passed to the job
scheduler.

NIP determines the addresses of the free
area queue element and lower and upper
boundaries for the dynamic area. It stores
these addresses in the boundary box. It
also stores the number of free bytes in the
dynamic area in the free area queue
element.

NIP builds and initializes DEBs for
SYS1.LINKLIB and SYS1.SVCLIB, and completes
initialization for the SYS1.LCGREC DEB.

NIP optionally extends the SVC table to
contain the TTR and the length of each
transient SVC routine.

NIP optionally determines if the timer
is enabled and working. If the timer is
not enabled and working, NIP sends a timer­
status message to the operator. If the
timer is enabled and working, it sets the
timer with a value of six hours.

NIP optionally determines the protection
key for the dynamic area from the "protect
key· field within the TCB. It sets the
storage key of the dynamic area.

NIP optionally makes all or part of the
SYS1.LINKLIB directory resident.

NIP optionally makes resident a group of
access method modules.

NIP optionally makes resident a group of
type 3 and type q SVC routines.

NIP optionally obtains space for job
queue records.

After completing all initialization pro­
cedures, NIP passes control to the dis­
patcher. The dispatcher then gives control
to the XCTL macro instruction which NIP had
placed in the dynamic area. This causes
the job scheduler to be brought into the
dynamic area and given control.

CVT INITIALIZATION

If the optional BLDL table or RAM and
RSVC routines (explained later in this
section) are to be included in the system,
they will be added at the end of the
nucleus. NIP then increases the address at
the end of the nucleus (or at the end of
the optional routines) to a double-word
boundary in systen;s without storage protec­
tion. In protected systems, NIP increases
this address to a 20qa byte (2K) boundary.
NIP then stores this address (the lowest
address not in the fixed area) in CVT field
CVTNUCB. It is used by the system environ­
ment recorder.

r-------T------------------------,
OIBit 7 =1 1

1 Hier. 1 Address of FQE 1
1 Support 1 for processor storage 1
.-------~-------~----------------~

41 1
1 Address of low boundary 1
1 for processor storage 1
~--------------------------------~

al 1
1 Address of high boundary 1
1 for processor storage 1 L ________________________________ J

Boundary Box

r--------------------------------,
121 1

1 Address of FQE 1
1 for IBM 2361 Core Storage 1
~--------------------------------~

161 1
1 Address of low boundary 1
1 for IBM 2361 Core storage 1
~--------------------------------~

20 1 1
1 Address of high boundary 1
1 for IB~ 2361 Core Storage 1 L ________________________________ J

Boundary Box Extension

• Figure 31. Boundary Box

H
I
E
R
A
R
C
H
Y

o

H
I
E
R
A
R
C
H
Y

1

DYNAMIC AREA INITIALIZATION

The portion of main storage outside the
fixed area is called the dynamic area. NIP
initializes the dynamic area as follows:

• Pre-assembled code is moved from NIP to
the beginning of the dynamic area.
This code includes a PRB and the XCTL
code that causes loading of the job
scheduler through an XCTL macro
instruction.

• The address constants are relocated in
the PRB and XCTL code.

BOUNDARY BOX INITIALIZATION

A three word (12 byte) boundary box
specifies the boundaries of the dynamic
area (see Figure 31). NIP initializes the
boundary box as follows:

Word 1 Address of a free area queue ele­
ment (FQE) describing all free
space in processor storage.

Word 2 Address of the beginning of the
dynamic area. In an unprotected
system, this is the address of the
end of the fixed area rounded up to
a double word boundary. In a
storage protected system, the
address of the end of the fixed
area is rounded up to a 20Q8 byte
(2K) boundary.

Word 3 Highest address, plus one byte, in
processor storage. This address is
passed to NIP by IPL.

If Main Storage Hierarchy Support is
included in the system, bit 7 of the first
byte in the boundary box is set to "1", and
the boundary box is expanded to six words
(see Figure 31). If IBM 2361 Core storage
is not included in the system, the first
three words of the boundary box are ini­
tialized as shown in the preceding para­
graph, and the additional three words are
set to zero. If it is included in the
system, then the dynamic area is divided
into two parts. The portion of the dynamic
area within processor storage is known as
hierarchy 0; the IBM 2361 Core Storage
portion of the dynamic area is known as
hierarchy 1. The first three words of the
boundary box describe hierarchy 0 and are
initialized as shown in the preceding para­
graph. The additional three words (Words
Q, 5, and 6) describe hierarchy 1 and are
initialized as follows:

Word 4 Address of an FQE describing all
IBM 2361 Core Storage space •

Appendix B: Nucleus Initialization Program (NIP) 89

Word 5 Address of the beginning of IBM
2361 Core Storage. This address is
one higher than the last processor
storage address.

Word 6 Highest address, plus one byte, in
IBM 2361 Core Storage. This
address is passed to NIP by IPL.

Figure 32 shows main storage and the
boundary box (for a system including Main
Storage Hierarchy Su~port and IBM 2361 Core
Storage) after being initialized by NIP.

r----------1D--f-----------f-----------f--
I I I I I
I I I I I
I I I , ,
, "Dynamic IBM 2361
,(Optional), Free Area Core
, 'Area (Hierarchy 1) Storage
, 'I , , , " , ,
~----, " , ,

Ct:~~-1-----1 --t-----------l-----------,--
, 'J J
, , Free ,
J J Area Dynamic
~----, J' Area

B~::~-l-----~ __ t_ (HierarC~y O)

'XCTL code , ,
~----------~ ,

At~~~:::~1--1 --------------t-
, Routines , I
~----------~ I

Boundary
Pox

r-----'
, t B J

~-----~
, t A J

~-----~
, t C ,

t-----~
, t C ,

~-----~
, t c J
~-----~
, t D ,
L _____ J

Nucleus

, ,
J , ,

Fixed
Area

Processor
storage

__________ J ______________ ~ ___________ ~ __

• Figure 32. Dynamic Area and Boundary Box
Initialization

90

FREE AREA QUEUE ELEMENT INITIALIZATION

The free area queue element (FQE) for
processor storage (hierarchy 0 of the
dynamic area) is a double word following
the PRB and XCTL code in the dynamic area.
NIP initializes this FQE by:

• calculating the length of the free area
within processor storage and storing
this value in the second word of the
FQE. The free area is defined as the
entire area from the address of the FQE
to the end of processor storage (see
Figure 32).

• Storing zeros in the first word of the
FQE.

The FQE for IBM 2361 Core storage (hier­
archy 1 of the dynamic area) is a double
word at the beginning of this storage
space. NIP initializes this FQE by:

• calculating the total length of IBM
2361 storage space and storing this
value in the second word of the FQE.

• Storing zeros in the first word of the
FQE.

Figure 33 shows an FQE built by NIP.

o 4 8
r-------------------T-------------------,
J Zeros ,Length of free areal
I I (in bytes) J L ___________________ ~ ___________________ J

• Figure 33. Free Area Queue Element (FQE)
Built by NIP

SYS1.SVCLIB, SYS1.LINKLIB, AND SYS1.LOGREC
DEB INITIALIZATION

NIP builds DEBs (data extent blocks) for
the SYS1.LINKLIB and SYS1.SVCLIB system
data sets. Main storage for the DEBs is
acquired at the u~per end of the nucleus.
The size of the DEBs, and the extent
descriptions, depends on their associated
data set control blocks (DSCBs). As many
as 16 extents may be specified, and
SYS1.LINKLIB may consist of as many as 16
concatenated data sets (listed in member
LNKLSTOO of SYS1.PARMLIB), with a maximum
of 16 extents each.

The SYS1.LINKLIB and SYS1.SVCLIE DEBs
are built and initialized with information
from the system catalog, the VTOCs (volume
table of contents), and the DSCBs and DCBs
(data control blocks) for these data sets •
NIP also completes initialization for the
SYS1.LOGREC system data set, with informa­
tion obtained from its DCB and DSCB.

To initialize the DEB, NIP obtains the
following data and stores them in the
corresponding DEB fields:

• Start cylinder address and track ad­
dress (CCHH) of the data set.

• End CCHH of the data set.

• Number of tracks occupied by the data
set.

• UCB address for the system residence
device.

• I/O Appendage Table address.

Figure 3q shows the DEB fields which are
initialized by NIP.

r---------------------------------------,
01 1

1 1
..L ..L
'-1"'" T 1
1
1

1
1

1 1
~---------T-----------------------------~

281 1 DEBAPPAD 1
1 1 I/O Appendage Table Address 1
~---------+-----------------------------~

321 1 DEBUCBAD 1
1 1 UCB Address 1
~---------~---------T-------------------~

361 1 DEBSTRCC 1
1 ICylinder Start Addrl
~-------------------+-------------------~

qO 1 DEBSTRHH 1 DEBENDCC 1
1 Track Start Addr 1 Cylinder End Addr 1
~-------------------+-------------------~

qql DEBENDHH 1 DEBN~TRK 1
1 Track End Addr 1 Number of Tracks 1 L ___________________ ~ ___________________ J

Figure 3q. DEB Initialization

NIP executes in a stand-alone environ­
ment using its own input/output routine.
To initialize the DEB, NIP:

1. Reads the standard volume label to
determine the volume table of contents
(VTOC) address on the system residence
device.

2. Reads the data portion of VTOC DSCB to
determine the tracks per cylinder for
the system residence device.

3. Determines the UCB address of the
system residence device through UCB
table look up.

q. Determines the DEB address for
SYS1.LOGREC. The DEB Address is
available within the DCB. The DCB
address for SYS1.LOGREC is available
in CVT field CVTDCB.

5. Searches the VTOC and reads, into a
buffer, the data portion of the DSCB
for the data set.

6. Moves Start CCHH and End CCHH for the
data set from the buffer into the DEB.

7. Computes the number of tracks con­
tained within the data set extent and
stores this value in the DEB.

8. Stores the UCB address into the DEB.

9. Moves the I/O Appendage table address
from CVT field CVTXAPG to the DEB.

Note: NIP also completes initialization of
all fields in the SYS1. LINKLIB and
SYS1.SVCLIB DEBs. See IBM System/360
Operating System: System Control Blocks,
Form C28-6628, for further information.

SVC TABLE EXTENSION (TTR TABLE)
INITIALIZATION

This is an optional NIP function that is
selected during system generation.

The TTR address and length (L) of each
non-resident SVC routine are available in
the partitioned data set (PDS) directory of
the SVC library.

NIP initializes the TTR table by:

• Searching the PDS directory of the SVC
library to find the TTR and length of
each transient SVC routine.

• Storing TTR and L of each transient SVc
routine in a table within the nucleus.
The assigned area for this table is
within the SVC handler routine.

The TTR table contqins a q-byte entry
for each transient SVC routine. The format
of each q-byte entry in the table is shown
below:

Bits:
1-----10-----1----8----1------11------1-3-1
r------------T---------T--------------T---'
I 1 I I I
I TT 1 R 1 LENGTH 1 ESA I L ____________ ~ _________ ~ ______________ ~ ___ J

<-----------------4 Bytes-----~----------->

Appendix B: Nucleus Initialization Program (NIP) 91

where:

'IT

R

L =

ESA =

Track address of the transient
SVC routine relative to the start
of the SYS1. SVCLIB data set.

Record number on the track.

Length in bytes of the transient
SVC routine.

Extended save area in double
words. This field is pre-
assembled in the table.

NIP uses the following
available in the SVC handler
initialize the TTR table:

information
routine to

• Relocation table, containing a 1-byte
index number for each SVC in the SVC
table.

• Highest number assigned to an IBM sup­
plied SVC routine.

• Highest number assigned to a resident
SVC routine.

To initialize the TTR table, NIP:

1. constructs an eight byte name for the
transient SVC by using the relocation
table and the highest resident SVC
nurr.ber, as explained below:

• Picks up the entry in the relocation
table which corresponds to a tran­
sient SVC.

• Translates the entry number in the
relocation table to a SVC number.

• converts the SVC number from binary
to decirr.al.

• Unpacks the decimal number to a
4-byte number.

• Constructs an 8-byte name for the
SVC routine by placing the 4-byte
unpacked decimal number beside a
pre-assembled four character prefix
for the SVC names, as follows:

IGCO

pre-assembled
prefix

XXXX

unpacked
decimal number

2. Loads the following registers:

92

• Address of the input parameter list
to the BLDL macro instruction is
placed in register O.

• Address of the SYS1.SVCLIB DCB is
placed in register 1.

3. Issues the BLDL macro instruction to
search the SYS1.SVCLIB directory.

4. Tests for the successful execution of
the BLDL macro instruction.

5. On successful completion, BLDL returns
the data extent for the SVC routine in
a return area. NIP moves the TTR and
length of the SVC routine from the
return area into the TTR table, in a
format shown in the diagram above.

6. When unsuccessful, BLDL returns an
error code in register 15. NIP tests
the error code and sends one of the
following error messages to the opera­
tor:

"IEA101I SVC ROUTINE IGCOXXXX NOT
AVAILABLE - PERMANENT I/O ERROR ON SVC
LIBRARY."

"IEA102I SVC ROUTINE IGCOXXXX NOT
AVAILABLE - NOT FOUND ON SVC LIBRARY."

7. Scans the relocation table and repeats
the above procedure for each transient
SVC routine.

PROTECTION KEY INITIALIZATION

Main storage protection is an optional
hardware feature. If this hardware is
included in the central Processing Unit,
storage protection can be selected during
System Generation through use of the PRO­
TECT option in the SUPRVSOR macro instruc­
tion. When protection is selected, the
storage keys are set as follows:

• The storage occupied by the nucleus is
set to a key of zero.

• The dynamic area is set to the non-zero
key specified in the "protect key"
field of the TCE.

TIMER INITIALIZATION

The timer is an optional hardware fea­
ture. It can be enabled or disabled by a
switch on the system control panel.

To initialize the timer, NIP:

1. Deterrr.ines if the timer is working by:

• Setting location 80 to a value of
six hours (X'6309109E).

• waiting for the timer to decrement.

• Comparing the contents of location
80 with the original six hour value.

If the contents of location 80 are
equal to six hours, NIP sends the
following message to the operator:

WIEA100A TIMER IS NOT WORKING. PUT
TIMER SWITCH ON. n

2. Resets location 80 to a value of six
hours.

BUILDING A RESIDENT DIRECTORY FOR
SYS1.LINKLIB

This section is applicable only if the
resident BLDL table option was selected
during system generation.

Each time an A'I'TACH, LINK, XCTL, or LOAD
macro instruction is issued, the system
issues a BLDL with a subsequent prograJf
fetch of the module. When the resident
BLDL table option is selecte~ during systerr
generation, a standard list which includes
all or part of the SYS1.LINKLIB directory
can be made resident in the nucleus by the
nucleus initialization program. Any link­
age to a SYS1.LINKLI3 module causes a scan
of the resident table before a direct
access device search is initiated in the
BLDL routine.

The message:

IEA101A SPECIFY SYSTEM PARAMETERS

is issued
option was
generation
may then:

to the operator if the CO~M
specified in the SUPRVSOR system
macro instruction. The operator

1. Specify an alternate list of
SYS1.LINKLIB modules whose directory
entries are to be made resident.

2. Request a listing of the names of the
modules whose directory entries were
made resident.

3. Cancel the option for the current IPL.

If a list is selected, NIP then:

1. Reads the specified list from member
IEABLDxx in SYS1.PARMLIB (where xx=OO
or is replaced by two alphanumeric
characters supplied by the operator).

2. Places the names in a table which is
filled in by the BLDL routine.

3. Issues a BLDL.

If a normal return is received from the
BLDL routine, the boundary box is adjusted
to include the resident directory table as
a part of the nucleus.

If an error code is returned from the
BLDL routine, NIP issues one of the follow­
ing messages:

IEA108I PERMANENT I/O ERROR DURING BLDL

The BLDL function is not performed.
continues to initialize the nucleus.

NIP

IEA1091
MODULES

BLDL FAILED FOR FOLLOWING

This message is followed by a list of names
of the n,odules whose directory entries were
not made resident because they were not
found in SYS1.LINKLIB. NIP adjusts the
boundary box to include the incomplete BLDL
table and continues as though the table had
been completed.

NIP places the address of the BLDL table
into an area in the BLDL routine, IECPFND1.

RESIDENT ACCESS METHOD (RAM) INITIALIZATION

When the RAM option is selected during
system generation, a group of access method
modules are preloaded as part of the nucle­
us by the nucleus initialization program,
thus creating a permanent system load list.
Each time a LOAD is issued for any access
method module, the system load list is
checked. A program fetch is not performed
if the module is found in the systerr load
list. Otherwise, the system loads the
module in the standard manner.

If the COMM option was specified in the
SUPRVSOR macro instruction during system
generation, NIP issues the following rres­
sage to the operator:

IEA101A SPECIFY SYSTEM PARAMETERS

The operator may then:

1. Specify an alternate list of access
method modules to be loaded.

2. Request a listing of the names of the
access method modules that were
loaded.

3. Cancel the option for the current IPL.

If a list was selected, NIP then:

1. Reads the specified list of access
method modules from member IEAIGGxx in
SYS1.PARMLIB.

2. Issues a LOAD macro instruction for
each module in the list. This creates
a load list attached to the TCB. The
list pointer is moved to an area in
the nucleus which is reserved for the
system load list pointer.

Appendix B: Nucleus Initialization Program (NIP) 93

3.

If NIP is unable to load an access
method module, it issues the following
message:

IEAIIOI LOAD FAILED FOR (module name)

NIP continues to initialize the nucle­
us even though the named access method
module was not loaded as part of the
RAlYj option.

The boundary box is adjusted to
include the system load list and
access method modules as part of the
nucleus.

RESIDENT TYPE 3 AND 4 SVC ROUTINE
INITIALIZATION

When the resident type 3 and 4 SVC
routine option is selected during systero
generation, a standard list of type 3 and 4
SVC routines may be loaded as part of the
nucleus by NIP. If the COMM option was
specified in the SUPRVSOR macro instruction
during system generation, NIP issues the
following message to the operator:

IEAIOIA SPECIFY SYSTEM PARAMETERS

The operator may then:

1. Specify an alternate list of type 3
and 4 SVC routines to be loaded.

2. Request a listing of the names of the
routines that were loaded.

3. Cancel the option for the current IPL.

If a list was selected, NIP then:

1- Reads the specified list of SVC rou-
tines from member IEARSVxx in
SYSl. PARI~LIB.

2. Issues a LOAD macro instruction for
each module in the list. This creates
a load list attached to the TCB. If
the module is a type 3 routine or the
first roodule of a type 4 routine, its
entry point is placed in the SVC table
as discussed in the section entitled
"Resident Type 3 and 4 svc Routine
Option." After all loading has been
completed, the load list contains
entries for routines requested by type
4 SVC routines via XCTL macro instruc­
tions. Following these entries,
regardless of the order in which the
routines were actually loaded, are
entries for the first loads of type 3
or 4 SVC routines. The list pointer

94

is moved to an area in the nucleus
which is reserved for the RSVC system
load list pointer. If NIP is unable
to load an SVC routine, it issues the
following message:

IEAIIOII LOAD FAILED FOR (module name)

NIP continues to initialize the nucle­
us even though the named routine was
not loaded as part of the resident
type 3 and 4 SVC routine option.

If a requested SVC routine is not
supported at the installation, NIP
issues the following message:

IEAl141 svc (xxx) NOT SUPPORTED

The named SVC routine is defined but
cannot be loaded because it is not
supported at the installation.

If a
fined,

requested SVC routine is unde­
NIP issues the following

message:

IEAl151 SVC (xxx) NOT DEFINED

Indicating that no such SVC routine
exists.

3. The boundary box is adjusted to
include the RSVC load list and SVC
routines as part of the nucleus.

RESIDENT JOB QUEUE INITIALIZATION

When the resident job queue option is
selected during system generation, NIP
obtains the area needed to hold a specified
number of job queue records. If the COMM
option was specified in the SUPRVSOR rracro
instruction during system generation, the
number of resident job queue records speci­
fied during system generation may be over­
ridden when the nucleus is initialized. In
this case, NIP issues the following message
to the operator:

IEAI0IA SPECIFY SYSTEM PARAMETERS

The operator may then vary the number of
job queue records for the current IPL.
After the operator responds, NIP obtains an
area whose size is based on the nurober of
records to be made resident. The area
becomes part of the nucleus. A pointer to
the area is saved in a portion if the
nucleus that was reserved for this purpose
when the resident job queue option was
selected.

APPENDIX C: RESIDENT SUPERVISOR MODULES

r-----------T-------------T----------T--,
I ISysgen Output I I I
I IMacro to be IMicrofichel I
I I Checked for I Module I Routine Name I
Icsect Name I Module Name I Name I (or Other Specified Function; e.g., Table) I
~-----------+-------------+----------+--i
I IEAAIHOO I IEAAIH I 1 I First Level Interruption Handlers (FLIHs) I
I I IEAAPS I 1 I Dispatcher and Exit Effector I
I I IECIOS I 1 I I/O Supervisor I
~-----------+-------------+----------+--i
I IGC009 I I IEAADLOO I Delete I
~-----------+-------------+----------+--i
I IGC012 I I IEAASYOO I Synch I
~-----------+-------------+----------+--~
I IGC010 I I IEAAMSOO I Getmain I
~-----------+-------------+----------+--i
I IEAOPLOO I I IEAAPLOO I Prolog I
~-----------+-------------+----------+--~
I IGC011 I I IEAORT10 I Timer SVC I
~-----------+-------------+----------+--i
I IEEBAl I I IEECIROl I Console Interruption (Job Management) I
~-----------+-------------+----------+--i
I IEAOABOO I I IEAAABOO I Abterm . I
~-----------+-------------+----------+--~
I IGCOOl I IEAAWT I 1 I Wait I
~-----------+-------------+----------+--i
I IHASVCOO I SGIEA2SV I 1 I SVC Table I
~-----------+-------------+----------+--i
I IEAATAOO I IEAATA I 1 I SVC Second Level Interruption Handler (SLIH) I
I I I I Exit and Transient Area Handler I
~-----------+-------------+----------+--~
I IEACVT I CVT I 1 I Comrrunications Vector Table I
~-----------+-------------+----------+--~
I IGC002 I IEAA~T I 1 I Post I
~-----------+-------------+----------+--i
I IGC006 I IEAATC I 1 I Link, Load, XCTL I
I I I I Transient Area I
~-----------+-------------+----------+--i
I IEATCBOO I IEATCB I 1 I Control Blocks I
~-----------+-------------+----------+--~
I IEWFTMIN I --- I IEWE~MIN I Program Fetch I
~--------~--+-------------+----------+--i
I IEWFTPCI I I IEWFTPCI I Program Controlled Interrupt Fetch I
~-----------+-------------+----------+--~
I IEFJOB I I IEFKRESA I Job Scheduler Tables and Work Area I
I I I I (Job Management) I
~-----------~-------------~----------~--~
11Variable module names, dependent on macro instruction's use. I L ___ J

(continued)

Appendix C: Resident Supervisor Modules 95

(continued)
r-----------T-------------T----------T--,
I I Sysgen Output I I I
I I Macro to be I Microfiche I I
I I Checked for I Module I Routine Name I
ICsect Name I Module Name I Name I (or Other Specified Function; e.g., Table) I
~-----------+-------------+----------+--~ I IFBDCBOO I I IFBDCBOO I System Environment Recorder (SER) Data Control I
I I I I Block I
~-----------+-------------+----------+--~
I IGC018 I I IECPFIND I Find <Data Management) I
~-----------+-------------+----------+--~
I IGC031 I I IEWSVOVR I Overlay Supervisor I
~-----------+-------------+----------+--~
I IEEBC1PE I I IEEBC1PE I External Interruption (Job Management) I
~-----------+-------------+----------+--~
I IBC2311A I I IEC2311A I Disk Error Routine (I/O supervisor) I

~-----------+-------------+----------+--~
I IEFDPOST I I IEFDPOST I Unsolicited Interruption (Job Management) I
~-----------+-------------+----------+--~
I IEEMSLT I SGIEEOOl I 1 I Master Scheduler Resident Control Data Area I
I I I I (Job Management) I
~-----------+-------------+----------+------------------------~-------------------------~
I IECZDTAB I SGIECODT I 1 I Direct Access Device Table (I/O Supervisor) I

~-----------+-------------+----------+--~
I IECINTRP I I IECINTRP I Sense and Status Interpreter (I/O Supervisor) I
~-----------+-------------+----------+--~
I IEAANIPO I IEAA'UP I 1 I Nucleus Initialization Program I
t-----------~-------------~----------~--~
11 Variable module names, dependent on macro instruction's use. I L ___ J

96

APPENDIX D: PROGRAM FETCH RECORD FORMATS

CONTROL RECORD - (LOAD MODULE)

r-T---T--T--T--------T--T-~- --,
1011-314,16,18-15 1 1 1 I
I 1 15 17 1 I I I Record length is 20 bytes 1
L_~ ___ ~ __ ~ __ ~ ________ ~ __ ~ __ ~_ __ J

1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1

1
1
L--Length of control section

the control section (in bytes) that the text in
the following record belongs to (2 bytes)

L--------------CESD entry number - specifies the composite
external symbol dictionary entry that
contains the control section name of the
control section that this text is part
of (2 bytes)

1
1
1
1

--Channel COIr,mand Word (CCW) - that could be used to read the text
record that follows. The data address field contains
the linkage editor assigned address of the first byte
of text in the text record that follows. (8 bytes) 1

1
1
L--Count - contains two bytes of binary zeros.

length of the record.
The count field contains the

L--Count - in bytes of the control information (CESD ID, length of
control section) following the CCW field (2 bytes)

L--SDare - contains three bytes of binary zeros

--Identification - specifies that this is: (1 byte)

• A control record - 0000 0001

• The control record that precedes the last text record of this overlay
segment - 0000 0101

• The control record that precedes the last text record of the module -
0000 1101

Afpendix D: Program Fetch Record Formats 97

RELOCATION DICTIONARY RECORD - (LOAD MODULE)

r-T---T--T--T--------T-------- --,
1011-314,r6,18-15 116-255 Record length can be I
I I 15 11 I I between 24 and 256 bytes I L_L ___ L __ L __ L ________ L _______ _ __ J

I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I

I
I
I
I

I
I
L--RLD data -- see telow

I
I
I
I
I
I

L--spare - contains 8 bytes of binary zeros

L--Count - in bytes of t.he relocation dictionary information following
the spare 8 byte field (2 bytes)

L--Count - contains two bytes of binary zeros

--Spare - contains three bytes of binary zeros

L--Identification - specifies that this is: (1 byte)

• A relocation dictionary record - 0000 0010

• The last record of the segment - 0000 0110

• The last record of the module - 0000 1110

RLD Data -- see above

98

r--T--T-T---T-T---'
I I I I I I I
IR IP IFI A IFI A I
L __ L __ L_L ___ L_L ___ J

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I

I
I
I
I
I
L--Flaq -

r-T---T--T--T-T---T--T--T-T---'
I I I I I I I I I I I
IFI A IR IP IFI A IR IP IFI A I L_L ___ L __ L __ L_L ___ L __ L __ L_L ___ J

I
L--Address - linkage editor assigned

address of the address
constant (3 bytes)

specifies miscellaneous information as follows: (1 byte)
when byte format is xxxxLLST:
xxxx specifies the type of this RLD item (address constant)
0000 non-branch type in assembler language,a DC A(name)
0001 branch type (in assembler language, a DC V(name)
0010 pseudo register displacement value
0011 pseudo register cumulative displacement value
1000 and 1001 -- this address constant is not to be relocated,
because it refers to an unresolved symbol.
LL specifies the length of the address constant
01 -- two byte
10 -- three byte
11 -- four byte
S specifies the direction of relocation
o -- positive
1 -- negative
T specifies the tYEe of RLD item following this one
o the following RLD item has a different relocation

and/or positicn pointer
1 the following RLD item has the same relocation and

position pointers as this one, and therefore is omitted

I
I
I
I
I
I
I
I
I
I
I
I
I

L-Position pointer - contains the entry number of the CESD entry (or trans­
lation table entry) that indicates which control section
the address constant is in (2 bytes)

I
L--Relocation pointer - contains the entry number of the CESD entry (or

tion tatle entry) that indicates which symbol's
is to be used in the computation of the
address constant's value (2 bytes)

transla­
value

CONTROL AND RELOCATION DICTIONARY RECORD - (LOAD MODULE)

I
I
I
I
I
I

I I
I I
I L--Address
I
L_-Flag

I
I
I
I
I

I
I
L--Length

section

I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I

L--CESD entry
(2 bytes)

I
L--Address (3 bytes)

L--Position pointer (2 bytes)

L--Relocation pointer (2 bytes)

--Channel Command Word (8 bytes)

l--Count of RLD information (2 bytes)

of control
(2 bytes)

number

L--Count of control information (2 bytes) - the control information contains the
ID and length of control sections in the following text record.

l--Spare (3 bytes)

l--Identification (1 byte) - specifies that this record is:

• A control and RLD record - 0000 0011

• A control and RLD record that is followed by the
last text record of a segment - 0000 0111

• A control and RLD record that is followed by the
last text record of a module - 0000 1111

Note: For detailed descriptions of the data fields see:

Relocation Dictionary Record
Control Record

The record length will vary from 20 to 260 bytes.

Appendix D: Program Fetch Record Formats 99

PARTITIONED ORGANIZATION DIRECTORY RECORD - (AS RECEIVED FROM BLDL)

Byte
r---,

o I I
I Name of load module (member or alias name) I

41 I
~---T-------------------i

81 Relative (to beginning of data set) disk address of I Concatenation I
I module (TTR) I number I
~-------------------T-------------------T-------------------~-------------------i

121 Byte of binary IAlias indicator andl Relative (to beginning of data set) I
I zeros. 1 Imiscellaneous info.ldisk address of first text record. I
~-------------------+-------------------t---------------------------------------i

161continuation of I Byte of binary IRelative (to beginning of data set) I
Idisk address I zeros Idisk address of NOTE List or Scatter- I
~-------------------+-------------------t---------------------------------------~

201 translation recordlNumber of entries I Module attributes (see next page) I
I lin NOTE List 2 10,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 I
~-------------------~-------------------~-------------------T-------------------i

241 Total contiguous quantity of main storage required by thelLength(in bytes) ofl
I module Ifirst text record. I
~-------------------T---------------------------------------~-------------------~

281 continuation of IModule's linkage editor assigned entry point address I
I Length. I I
~-------------------~---------------------------------------T-------------------J

321Linkage editor assigned origin of first text record. I
I I l ___ J

r-------------------,
ILength of scatter I

For load modules in scatter format add: I I
r-------------------T---------------------------------------t-------------------i

361List (in bytes) ILength of translation table (in bytes) IESDID (CESD entry I
I I Inumber of control I
~-------------------t---------------------------------------t-------------------J

40lsection name) for IESDID (CESD entry number of control I
Ifirst text record. Isection name) containing entry point. I l ___________________ ~ _______________________________________ J

r-------------------,
For load modules with RENT or REUS attribute and Alias IEntry point address I
names add: I I

r---------------------------------------T-------------------~-------------------~
361 of the member name. I I

I I I
~---------------------------------------J I

40 I Member namE I
I r---------------------------------------J

441 I l _______________________________________ J

r---,
I SSI Bytes - Aligned on a half-word boundary at the end of the PDS I
I record. I l ___ J

Alias indicator and miscellaneous Information:
1. Alias indicator -- 0 signifies none,l signifies alias -- bit 0
2. Number of relative disk addresses (TTR)in user data field bits 1,2
3. Length of user data field (in halfwords) bits 3-7

PD8 Directory Record size (for 881, add 4 bytes to sizes):
Block format 36 bytes Scatter format 44 bytes
Block format with alias names 46 bytes Scatter format with alias names 54 bytes
1 This is normally a zero byte inserted to maintain half-word boundaries. If the

2

100

DCB o~erand in the BLDL macro instruction was specified as zero, this
byte will contain a 1 if the narr,e was found in the link library, and
a 2 if the name was found in the job library.

This byte contains zero if load module is not in overlay structure.

MODULE ATTRIBUTES

(see bytes 22 and 23 on the preceding page.)

Bit Number

o

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Attribute Bit setting

RENT 0
1

REUS 0
1

OVLY 0
1

TEST 0
1

LOAD 0
1

Format 0
1

Executable 0
1

Format 0

1

Compatibility 0

1

Format 0

1

Format 0

1

Format 0
1

Editability 0

1

Format 0

1

E44 Linkage Editor 0

1

Refreshable 0
1

Indication

Not reenterable
Reenterable
Not reusable
Reusable
Not an overlay module
Overlay module
Not under test
Under test
Not only loadable
Only loadable !L

Block format
Scatter format
Not executable
Executable
Module contains more than one text
record and/or RLD record(s).
Module contains only one text
record and no RLD record.
Module can be processed by all
levels of linkage editor.
Module cannot be reprocessed by
linkage editor-E.
Linkage editor assigned origin of
first text record is not zero.
Linkage editor assigned origin of
first text record is zero.
Linkage editor assigned entry
point is not zero.
Linkage editor assigned entry point
is zero.
Module contains RLD record(s)
Module does not contain an RLD record.
Module can be reprocessed by
linkage editor.
Module cannot be reprocessed by
linkage editor.
Module does not contain TESTRAN
symbol records.
Module contains TESTRAN symbol
records.
module not created by E44
Linkage Editor
module created by E44
Linkage Editor
not refreshable
refreshable

!L lviodule can only be loaded with the LOAD Ir.acro instruction. When the module is
in main storage it will be entered directly, and not through the use of an
XCTL, LINK, or ATTACH macro instruction.

Appendix D: Program Fetch Record Formats 101

APPENDIX E: ENQ/DEQ QUEUE CONTROL BLOCK (QCB) FORMATS

MAJOR QUEUE CONTROL BLOCK (MAJOR QCB)

The beginning of the major QCB queue is addressed by CVT field IEAAQCBO. The
format of a major QCB is:

°r-------------~--,
1 1 1
1 0 1 Address of next major QCB I

4~--------------+--~
1 I 1
I 0 I Address of previous major QCB 1

8~--------------+--~
1 1 I
I 0 1 Address of first minor QCB 1

12~--------------~--~
1 1
I I

161 Major naIl!e I
I I
1 1 20L---______ J

Address of next major QCB - the address of the next QCB on the major QCB queue.
If this is the last QCB on the queue, this field is zero.

Address of the previous maior QCB - the address of the previous major QCB on the
major QCB queue. If this is the first QCB on the queue, this field is the
address of CVT field IEAAQCBO.

Address of the first minor QCB - the address of the first minor QCB for this major
QCB.

Major name - the 8-byte major resource naIl!e.

102

MINOR QUEUE CONTROL BLOCK (MINOR QCB)

The format of a minor QCB is:

0r--------------r--1
I I I
I 0 I Address of UCB I

4~--------------+--i
I I I
I 0 I Address of previous minor QCB I

8~--------------+--i
I I I
I 0 I Address of next minor QCB I

12~--------------+--------------T-----------------------------i
I Minor name IQCB protection I I
I length I key I I

16~--------------~--------------J Minor name I
~ ~
-r -r L ___ J

Address of UCB - the address of the UCB representing the direct access device on
which the named resource resides.

Address of the previous minor QCB - the address of the previous minor QCB. If
this is the first minor QCR on the queue, this field contains the address of
the major QCB.

Address of the next minor QCB - the address of the next minor QCB on the queue.
If this is the last minor QCB, this field is zero.

Minor name length - the length in bytes of the minor resource name.

QCB protection key - the protection key of the job step (if applicable).

Minor name - a variable length (1 to 255 bytes) minor name.

Appendix E: ENQ/DEQ Queue Control Block (QCB) Formats 103

APPENDIX F: ENTRY AND SEGMENT TABLE FORMATS

ENTRY TABLE (ENTAB)

r-----------------------------T-----------------------------T-------T-------------------,
IUnconditional branch to last IAddress of symbol referred tol"to"segIPrevious Caller I
I entry BC 15,DISP(15,0) I Inumber I (zero initially) I
~-----------------------------+-----------------------------+-------+------------------~
IUnconditional branch to last IAddress of symbol referred tol"to"segIPrevious Caller I
I entry BC 15,DISP(15,0) I Inumber I (zero initially) I L _____________________________ ~ _____________________________ ~ _______ ~ ___________________ J

r-----------------------------T-----------------------------T-------T-------------------,
IUnconditional branch to last IAddress of symbol referred tol"to"segIPrevious Caller I
I entry-BC 15, DISP (15, 0) I I number I (zero initially) I
~--------------T--------------~--------------T--------------+-------+-------------------~
I SVC 45 IL 15,4(0,15) Loads GR15 with I BCR 15,15 I"from" IAddress of segment I
I Ithe value of the ADCON. I I seg.no.1 table (SEGTAB) I L ______________ ~ _____________________________ ~ ______________ ~ _______ ~ ___________________ J

1<---2 bytes-->I<--2 bytes--->I<--2 bytes--->I<---2 bytes-->I<lbyte>I<-----3 bytes----->I

DISP -- is the displacement, in bytes, of this entry from the last entry.

"to" segment number -- is the number of the segment containing the symbol being
referred to.

"from" segment number -- is the number of the segment that contains this entry.

104

SEGMENT TABLE (SEGTAB)

r----T--------------T--,
ITESTI IAddress of Data Control Block (DCB) used to load module 1 I
I ind·1 I I
~----L--------------+----------------------------------__________________________ ~
I I Address of note list 3. I
I I I
~-------------------+-------------------T-------------------T--------------------~
ILast segment IHighest segment no.ILast segment IHighest segment no. I
Inumber of region 1 lin storage-region llnumber of region 2 lin storage-region 2 I
~-------------------+-------------------+-------------------+--------------------~
ILast segment IHighest segment no. ILast segment IHighest segment no. I
Inumber of region 3 lin storage-region 31number of region 4 lin storage-region 4 I
~-------------------+-------------------L-------------______ ~ ____________________ ~
I Zero I (Not used in the Fixed-Task Supervisor) 1 I
I I I
f-------------------~--~
I (Not used in the Fixed-Task Supervisor) 3. I
I I
f-------------------T---T------~
IPrevious segment 11 Zero I status I
Inumber for segment11 I indctr I
f-------------------+---+------~
IPrevious segment IAddress of entry table entry (when caller 3. I status I
Inumber for segment21chain exists) lindctrl L ___________________ L ___ ~ ______ J

r------------------~---T------,
IPrevious segment IAddress of entry table entry (when caller 3. I status I
Inumber for segmentNlchain exists> I indctr I L ___________________ ~ ___ ~ ______ J

1<----------------------------------4 bytes------------------------------------->I

TEST indicator specifies that this module is "under test" using TESTRAN.
(Bit 1) Initialized by program fetch.

Highest segment no. in storage -- is initially set to 00 except for region 1 which
is initially set to 01 by linkage editor.

Status indicator -- indicates the status of this segment with the two last bits of
the entry table address field as follows:

00 segment is in main storage as a result of a branch to the segment.
10 segment is in main storage, no caller chain exists.
01 segment is not in main storage, but is scheduled to be loaded.
11 segment is not in main storage.

The status indicator for segment 1 is initially set to 10, all the rest are
initially set to 11.

3. Set to zero by linkage editor.

Appendix F: Entry and Segment Table Formats 105

APPENDIX G: SERO AND SERl RECORD ENTRY FOR~ATS

SERO and SERl produce two types of record entries corresponding to the two types of
errors processed: machine-check and channel errors. Record size varies with the type of
record and with the machine model. The forrrats of the record entries produced by SERO
and SERl are:

Machine Check Record Entry Forrrat
r--------------T-----T-----T----T---------,
I I SYS I MOD I R. E. I I
I R.E. LABEL I ID I NO. ITYPEI FLAGS I
~--------------L-----+-----L----~---------~
I I I
I DATE I TIME I
I I I
~--------------------~--------------------~
I I
I PROGRAM IDENTITY I
I I
~---~
I I
I MACHINE CHECK OLD PSW I
I I
~---~
I I
I ACTIVE I/O UNITS I
I I
I r--------------------~
I I CHANNEL TYPE I
I I ASSIGNMENTS I
~--------------------~--------------------~
I I
I GENERAL PURPOSE I
I REGISTER CONTENTS I
I I
~---~
I I
I FLOATING POINT I
I REGISTER CONTENTS I
I I
~---~
I I
I GENERAL PURPOSE REGISTER PARITIES I
I I
~--------------------T--------------------~
I I I
I FPR PARITIES I CPU I
I I HARDWARE LOGOUT I
~--------------------J I
I I
I MODEL BYTES I
I I
I 40 256 I
I 50 164 r--------------------J
I 65 176 I
I 75 152 I L ____________________ J

106

Channel Error Record Entry Format
r--------------T-----T-----T----T---------,
I I SYS I MOD I R.E. I I
I R.E. LABEL I ID I NO. ITYPEI FLAGS I
~--------------~-----+-----~----~---------~
I I I
I DATE I TIME I
I I I
~--------------------~--------------------~
I I
I PROGRAM IDENTITY I
I I
~---~
I I
I FIRST CCW OF FAILING CHAIN I
I I
~---~
I I
I FAILING CCW I
I I
~---~
I I
I CSW I
I I
~---~
I I
I ACTIVE I/O UNITS I
I I
I r--------------------~
I I CHANNEL TYPE I
I I ASSIGNMENTS I
~-----------T--------+--------------------~
I CHANNEL I I I
I and UNIT I FLAGS I I/O I
I ADDRESS I I I
~-----------~--------J I
I I
I HARDWARE LOGOUT I
I I
~---~
I I
I MODEL BYTES I
I ----w- -0- I
I 50 48 I
165,75 24 I
I I
I r-------------------J

I I
I I L ____________________ J

The fields in the record entry are
interpreted as follows:

Record Entry Label - 3 bytes
Identifies the record as output from
SER. It is set to SER in EBCDIC.

System Identifier - 1 byte
Identifies the version of SER which
created the record.

o SERO, 1 SERl

Model Number - 1 byte
Identifies the System/360 model on
which the record was created.

Record Entry Type - 1 byte
Identifies the type of error that
caused the record to be created.

C machine check
I channel error

Flags - 2 bytes

Byte 0

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Byte 1

Bit 0

Spare bit

0 Record entry is complete
1 Record entry is not

complete

0 Channel and unit address
matches a system UCB

1 Channel and unit address
does not match any system
UCB

o The operating system could
not continue after the
error

1 The operating system could
continue after the error

o The scheduler was not in
control when the machine
check occurred.

1 The scheduler was in con­
trol when the machine check
occurred.

o Program data was obtained
1 Program data could not be

obtained because the area
from which it would have
been extracted was over­
layed. (Applies only to
SERO.)

other bits - unused

Date - 4 bytes
Identifies the year and day in packed
decimal as follows:

00 xx xxx F

Unused Year Day Zone

Time - 4 bytes
Identifies the time of day when the
record entry was created.

xx xx xx x x

Hour Minute Second Tenths Hundredths

If the model does not have an interval
timer, this field is zero.

Program Identity - 8 bytes
Identifies the program in process or
the program requesting service when
the error occurred.

Machine Check Old PSW - 8 bytes
The field is taken directly from loca­
tions 48-55.

20 bytes Active I/O Units -
Identif ies by
a rr·.aximum of
busy when the

channel and unit address
ten devices that were
error occurred.

Channel Type Assignments - 4 bytes
Identifies the channel configuration
of the system as follows:

BYTE 0 BYTE 1
r------T------T------T------T-------->
ICHAN OICHAN 11CHAN 21CHAN 3IETC. L ______ ~ ______ ~ ______ ~ ______ ~ ________ >

Bit 0 0 Channel not present
1 Channel present

Bit 1 0 Multiplexor channel
1 Selector channel

Bit 2 0 Low speed
1 High speed

Bit 3 0 Not a storage channel
1 Storage channel

General Purpose Register Contents 64
bytes

Identifies the contents of the GPRs at
the time the error occurred. For the
Model 50, only bits 0-27 and the
parity bits are stored for each
register. For Models 65 and 75, GPRs
are tested for parity errors and
corrected if necessary before l:::eing
stored in this field.

Appendix G: SERO and SER1 Record Entry Formats 107

Floating Point Register contents - 32 bytes
Identifies the contents of all FPRs at
the time the error occurred. The
field is zero for Models 30 and 40 not
equipped with the floating point
feature.

General Purpose Register Parities - 8 bytes
F'or Model 40, this field is zero
because hardware corrects parity dur­
ing part of the nlachine check inter­
rupt cycle, making parity indications
unavailable. For Model 50, the field
contains the last four bits of each
register with the exception of regis­
ters 13, 14, and 15. (Applies only to
SERO.) For Models 65 and 75, the
field identifies the GPRs that con­
tained parity errors when the error
occurred. Only the first two bytes of
the field are used. They are inter­
preted as follows:

108

Byte 0 Byte 1

0000010 0 00100000

Register 0 Register 15

Registers 5 and 10 had parity errors.

Note: If this information is stored
by the SERO program for the model 75,
no parity errors will be indicated for
registers 13, 14, and 15 because SERO
cannot determine the parity in these
registers~

Floating Point Register Parities - 4 bytes
Identifies the FPRs that contained
parity errors when the error occurred.
The contents of the field differs
according to model and is interpreted
in the same manner as the GPR parity
field. The field is zero for a Model
40 record.

cPU Hardware Logout - 152 to 256 bytes
Represents all or part of the contents
of locations Hex 80 through Hex 17F.

First CCW of Failing Chain - 8 bytes
Identifies the first ccw of a chain of
CCWs being executed when an error
occurred.

Failiing CCW - 8 bytes
Identifies the specific CCW being
executed when a,n error occurred.

CSW - 8 bytes
Identifies the CSW that was stored
when an I/O error occurred.

Channel and Unit Address - 2 bytes
Identifies the device being serviced
at the time of the channel failure.

Flags - 2 bytes
Not used.

I/O Hardware Logout -
Identifies the
channel when an
occurred.

o to 48 bytes
status of the failing
I/O error interrupt

APPENDIX H: CHECKPOINT/RESTART RECORD FORMATS AND MODULE LIST

RECORD FORMATS

This section shows the format of the records included in a CHECKPOINT entry. These
records are created and written by the CHECKPOINT service routine (SVC 63).

CHECKPOINT HEADER RECORD (CHR)

°r-------------------T------------------,
I Number of I CHECKID I

dec hex I CHKPTs I Length I 4 --4-r---------------------------------------i----------_________ i __________________ ~

I I
I I
I CHECKID neft justified) I
I (Checkpoint Entry Identification) I
I I
I I

20 14 ~--~
I DDNAl':E of CHECKPOINT Data Set I
I I

28 lC ~---------------------------------------T--------------------------------------~
I Lower Boundary of Problem I Upper Boundary of Problem I
I Program Storage I Program Storage I

36 24 ~-------------------T-------------------+--------------------------------------~
I CHKPT I TIOT I CHECKPOINT Work Area Size I
I Blocksize I Length I I

44 2C ~-------------------i-------------------+--------------------------------------~
I CHECKPOINT ~i/ork Area I CHECKPOINT SVRB Address I
I Address I I

52 34 ~---------------------------------------+--------------------------------------~
I Lower Boundary of IBM 2361 I Upper Boundary of IBM 2361 I
I Core Storage I Core Storage I l _______________________________________ i ______________________________________ J

Note: The CHR is 400 bytes long and is padded with ones.

CORE IMAGE RECORD (CIR)

r---~~--,
I I
I ProbleIli Program Core I
I I l ___ ~~----------______________________________ J

I
I
I

Direct copy of problem program storage,
froIT, the highest to the lowest address.

Blocksize 1. Is specified by the caller, or

2. If not specified, is the
maximum for the device type.

Appendix H: CHECKPOINT/RESTART Record Formats and Module List 109

DATA SET DESCRIPTOR RECORDS

Type 1 DSDR

o 2 178 186 190
r-------T-------------~~------------T------------------------------T---------------,
I I I I I
IX' 0000' I JFCB I DDNAME I UCBTYP I
I I I I I
l---T---~-------------~~------------~---------------T--------------~-------T-------J

I I I I
I I I I
I I I I

Type 1 DSDR Job File DDNAME of the Unit Control Block
Identifier Control Block CHECKPOINT Data Set Type Field

(2 bytes) (176 bytes) (8 bytes) (4 bytes)

Type 2 DSDR

o 2 178
r-------T-------------~r------------,
I I I
IX'OOOq'1 JFCB Extension I
I I I
l---T---L-------------~r------------J

I I
I I
I I

Type 2 DSDR Job File Control
Identifier Block Extension

(2 bytes) (176 bytes)

Type 3 vSDR

o 2 178
r-------T-------------~r------------,
I I I
IX'OOOS'I GDG BCT I
I I I
l---T---L-------------~~------------J

I I
I I
I I

Type 3 DSDR Generation Data Group
Identifier Bias Count Table

(2 bytes) (176 bytes)

Special Identifiers

o 2 o 2
r-------l r-------,
I I Indicates that the I I Indicates that the
IX'OOlO'I--Frevious DSDR is the IX'0014'1--previous DSDR is the
I I last one. I I last one in the block.
l _______ J l _______ J

110

SUPERVISOR RECORD (SUR)

o 48 49 52
r---------------~-------------------~r-------------------------------------T--T------,
I I I I
I First 48 bytes of the user's Task Control Block I I FSA I
I I I I L ___________________________________ ~~-------------------------------------~T-~--T---J

I I
I I Reserved ________ J I

I
I Address of the first user save area _____________ J

52 56 60 61 64 96 100 104
r---------T---------T--T------T----------------~~----------------T---------T---------,
I I 'I I , , ,
I DCB , FQE IFP, FQE' Floating Point Registers I SYNAD I Return ,
I I I' I , , Area ,
L----T----L----T----LT-~--T---L----------------~r----------------L----T----L----T----J

I I I , , ,
I 'I l __ Zero or Address of the first I I
I 'I FQE for IBM 2361 Core storage , ,
, I' I , , 'L __ X'Ol' Floating peint registers exist , ,
, , X '02' Floating peint registers do not exist , I
, I I I
, l___ Address of the first FQE for processor storage, ,
, , I
I CHKPT DCB SYNAD ____________ J I
L________ Address of the CHKPT DCB I

Address of the return area for CHECKID __ J

104 112 116 156
r------------------~---------T--------------------------~~--------------------------,
I 'I ,
I CHECKID ,offset I Tape SYSOUT Information ,
I I I ,
l---------T---------L----T----L-----------------------___ ~~--------------------------J , ,

I I I l __

I
I
I
I

Displacement from the beginning of the SVC
transient area to the next sequential instruction
for the end-of-volume (EOV) routine, IGG0551A

L _________________ Checkpoint entry identification name

Appendix H: CHECKPOINT/RESTART Record Formats and Module List 111

CHECKPOINT/RESTART SVC MODULE LIST

The table below shows the entry point name, functional name, object module name, and
CSECT name for each of the CHECKPOINT and RESTART transient SVC routines.

Load modules use a work area in problem program storage to communicate with each
other. The address of this work area is passed in register 1. The modules are listed in
the order executed.

Object Module Name
and

Microfiche Name

IHJACPOO

IHJACPOI

IHJACP02

IHJACPIO

IHJACP20

IHJACP25

IHJACP30

IHJACP40

IHJACP50

IHJACP70

IHJARSOO

IHJARSOI

IHJARS20

IHJARS40

IHJARS41

IHJARS43

IHJARS45

IHJARS4C

IHJARS4D

IHJARS4E

IHJARS47

IHuARS49

IHJARS4B

IHJARS60

112

Name of Routine

CHECKPOINT ROUTINE--HOUSEKEEPING 1

CHECKPOINT ROUTINE--HOUSEKEEPING 2

CHECKPOINT ROUTINE--HOUSEKEEPING 3

CHECK I/O

PRESERVE 1

PRESERVE 2

CHECKMAIN

HESUl'lE I/O

CHECKPOINT EXIT ROUTINE

CHECKPOINT MESSAGE ROUTINE

RESTART HOUSEKEEPING 1

RESTART HOUSEKEEPING 2

REPMAIN

JFCB PROCESSOR 1

JFCB PROCESSOR 2

MOUNT/VERIFY NON-DIRECT ACCESS

MOUNT/vERIFY DIRECT ACCESS

SYSIN/SYSOUT NON-DIRECT A.CCESS PROCESSOR

SYSIN/SYSOUT DIRECT ACCESS POSITIONING 1

SYSIN/SYSOUT DIRECT ACCESS POSITIONING 2

NON-DIRECT ACCESS POSITIONING

DIRECT ACCESS POSITIONING

FINAL PROCESSING MODULE

RESTART EXIT ROUTINE

Control Section Name
and

Entry Point Name

IGCOOO6C

IGCOI06C

IGC0206C

IGC0506C

IGCOA06C

IGCOC06C

IGCOF06C

IGCON06C

IGCOQ06C

IGCOS06C

IGC0005B

IGCOI05B

IGC0505B

IGCOG05B

IGCOI05B

IGCOK05B

IGCOM05B

IGCOL05B

IGCON05B

IGCOQ05B

IGCOP05B

IGCOR05B

IGCOT05B

IGCOV05B

• CHECKPOINT/RESTART REGISTER USAGE TABLE

-------------------T-----------------------T-----------------------T---------------------
I Input to Module I Internal Use I Output from Module
~-----T---T---T-----T---+---T---T---T-----T-----+-----T-----T---T-----

Modules I 1 I 3 I 4 I 5 I 8 I 2 I 3 I 6 I 11 I 12 I 1 I 5 I 8 I 15
-------------------+-----+---+---+-----+---+---+---+---+-----+-----+-----+-----+---+-----

IHJACPOO A1 B C D E F F2 2

IHJACPOl G E F F

IHJACP02 G E F F

IHJACP10 G E F F

IHJACP20 G E F F

IHJACP25 G E F F

IHJACP30 G E F F

IHJACP40 G E F F

IHJACP50 G2 2 E F H 3

IHJACP70 H E F J

IHJlIRSOO A B C D E K K

IHJARSOl K E K K

IHJARS20 K E K

IHJARS40 K E K L

IHJARS41 K M E K L

IHJARS43 K M E K L

IHJARS45 K M E K L
I

IHJARS4C K M E K L I
I

IHJARS4D K M E K L I
I

IHJARS4E K I-j E K L I
I

IHJARS47 K M E K L I
I

IHJARS49 K M E K L I
I

IHJARS4B K M E K I
I

IHJARS60 K I E K I J
-------------------~-----~---~---~-----~---~---~---~---~-----~-----~-----~-----~---~-----
1If CHKPT CANCEL, Rl contains all zeros
2If an error in Module IHJACPOO, Rl contains all zeros and R5 addresses CHECKPOINT'S

SVRB
3If CHKPT CANCEL, R15 contains return code

A - paraIr,eter list address G - address of CHKPT work area
B - CVT address H - address of CHKPT's SVRB
C - TCB address J - return code
D - SVRB address K - address of RESTART WORK AREA
E - base register L - address of data set entry in work area
F - address of CHKPT work area M - address of data set entry in work table

Appendix H: CHECKPOINT/RESTART Record Formats and Module List 113

Where more than one page reference is
given, the first page number indicates the
major reference.

ABDUMP ••••••••••••••••••••••••••••••• 30,25
ABEND ••••••••••••••••••••••••••••• 25,29,30
ABTERM. •• 25,29
Active request block

queue ••••••••••••••••••• 34-36,21,22,14,12
Appendage •••••••.••••.•.•.•••••••••••••• 91
Area

environment recording (ERA) •••••••••• 55
extended save (ESA) ••••••••••••••• 92,18
fixed or system •••••••••••••••• 89,31,11
free •••••••••••••••••••••••• 30,31,89,90
I/O supervisor transient •••••••••• 16,11
processing program

(dynamic) •••••• 92,21,31-36,88-90,11,14
program interruption
control (PICA) ••••••••••••••••••• 23,26

SVC transient •••••••••••• 11,16,22,91,92
Asynchronous Exit

Asynchronous Exit Queue ••••••••••• 21,22
Asynchronous Exit Routine ••••••••• 19-21
(See Exit Effector)

ATTACH ••••••••••••••••••••• 101,12,36,25,26

BLDL •••••••••••••••••••••••••••••• 92,93,36
Block

queue control (QCB) ••••••• 102,103,28,29
request (RB) •••••••••• 20,34,26,12,88-96

interruption (IRB) •••.•••••• 21-23,12
loaded (LRB) •••••••••••••••••••••• 13
loaded program (LPRB) •••••••••• 13,14
minor ••••••••••••••••••• 29,34,36,103
program (PRB) ••••••••• 88-90,36,34,12
supervisor (SVRB) ••••••••••• 12,19,35
system interruption

(SIRB) •••••••••••••••••• 12,21,34,30
task control

(TCB) ••••••••••••• 25-30,23,19-21,12-14
Boundary box •••••••••••••••••••••• 31,88,89

Central Processing Unit (CPU) •• 11,12,15,25
Channel Error Record

(See System Environment
Recording)

CHECKID •••••••••••••••••••••••••••• 109,111
Checkpoint

core image record (CIR) •••••••••••••• 59
data set descriptor record

(DSDR) •••••••••••••••••••••••• 57,90,91
header record (CHR) ••••••••••••••• 57,90
supervisor record (SUR) ••••••••••• 57,92

CHKPT •••••••••••••••••••••••••••••••• 56-60
CIRB Routine •••••••••••••••••••••••••••• 21

(See Exit Effector)
Communication vector table

(CVT) •••••••••••••••••••••••••••• 88-90,28
Contents supervision •••••••••••••• 14,34-36
Control block (see Block)

114

Core image record (CIR) ••••••••••••••••• 57
cPu ••••••••••••••••••••.•••••••••• 11,15,25

Data management •••••••••••••••• 15,34,36,30
DELETE ••••••••••••••••••••••••••••••• 34,36
DEQ •••••••••••••••••••••••••••••••••• 25,29
Dispatcher •••••••••••••••••••••••• 16,21,51

(see Exit Effector)
Dump, storage

ABDUMP ••.•••••••••••••••••••••••.• 25,30
indicative ••••••••••••••••••••••••••• 30

Dynamic Area (See Processing
Program Area)

Element
free area queue (FQE) •••••••••• 32,88-90
interruption queue (IQE) •••••••••• 20-22
program interruption (PIE) ••••• 20,26,23
timer queue ••••••••••••••••••••••• 50,51

End of task
abnormal •••••••••••••••••••••••••• 29,30
normal ••••••••••••••••••••••••• 29.30,25

ENQ ••••••••••••••••••••••••••••••• 25,28,29
Entry procedures, SVC •••••••••••••••• 18,19
Entry table (ENTAB) •••••••••••••••••• 43-48
Environment recording area •••••••••••••• 52
Exit .

asynchronous •••••••••••••••••••••• 19-22
SVC ••••••••••••••••••• 16,19-21,50.35,36
type 1: ••••••••• 16,19,20,31,26.50,35,36

Exit effector ••••••••••••••••••••• 21.51,36
Extended save area (ESA) ••••••••••••• 18,92
EXTRACT •••••••••••••••••••••••••••••• 26,25

Fetch, program (see Program
Fetch)

FINCH ••••.•••••••••.••••••••••••••••. 34-36
Fixed area •••••••••••••••••••••••• 11,31,81

nucleus •••••••••••••••• , •••••••• 11,88,89
transient area •••••••••••••••••••• 11,88

FLIH (First Level Interruption
Handler)

I/O •••••••••••••••••••••••••••• 16.22,23
MC (machine check) •••••••••• 24,17,52-54
P (program) •••• ' •••••••••••••••• 17,23,24
SVC ••••••••••••••••••••••••• 16,18,19,50
T/E (timer/external} •••••••• 16,23,50,51

Free area •••••••••••••••••••••• 31,32,89,90
free area queue •••••••••••••••• 32,88-90
free area queue element

(FQE} ••••••••••••••••••••••••• 32,88-90
FREEMAIN ••••••••••••••••••••••••••••• 33,31

GETMAIN ••••••••••••••••••• ' •••••••• ' ••• 33,31

Hierarchy
(See Main Storage Hierarchy
Support)

IBM 2361 Storage ••••••••••••••••••••• 11,31
IDENTIFY ••••••••••••••••••••••••••••• 34-36
Initial program loader (IPL) ••••••••• 82-87

(

Chart. • • • 80
Common I/O........................ 86, 87
Control section Data
Organization •••••••••••••••••••••••• 85

Hardware initialization ••••••••••• 82,84
IPL Bootstrap Record ••••••••••••••••• 82
IPL Control Record ••••••••••••••••••• 82
IPL relocation ••••••••••••••••••••••• 85
IPI Tables ••••••••••••••••••••••••••• 83
Nucleus load •••••••••••••••••••••• 85,86
Nucleus selection •••••.•••••••••••• 82,84
RLD relocation ••••••••••••••••••••••• 86

Initialization
boundary box ••••••••••••••••••• 31,89,88
communication vector table

(CVT) •••••••••••••••••••••••••••• 88,89
data extent block (DEB) •••••••••••••• 90
dynamic area (see Area) ••••••••••• 88,89
hardware •••••••••••••••••••••••••• 82,84
main storage •••••••••••••••••••••• 88,89
nucleus •••••••••••••••••••••••• 88,89,81
protection key •••••••••••••••••••• 92,88
resident access method

(RAM} •••••••••••••••••••••••••••• 93,94
resident job queue ••••••••••••••••••• 94
SVC routines

resident type 3 and 4 ••••••••••••• 94
SVC table extension ••••••••••••••• 91,92
timer •••••••••••••••••••••••••••••••• 92

Input/output interruptions •••••••• 16,22,23
Input/output supervisor •••••••• 16,21-23,42

transient area ••••••••••••••••• 11,16,22
Interrupt key ••••••••••••••••••••••••••• 23
Interruption handling (see

FLIHiSLIH) ••••••••••••••••••••••••••••• 16
Interruption Queue Element

(IQE) (see Element) ••••••••••••••••• 20-22
Interruption request block

(IRB) •••••••••••••••••••••••••••• 12,20-22
Interruption supervision ••••••• 14-16,18,63

Job management •••••••••••••• 12,15,30,51,11

Key
interrupt. •• 23
LOAD. •• 82
protection ••••••••••••••••••••••••••• 92
storage ••••••••••••••••••• ~ •••••••••• 92

Library, SYS1.
LINKLIB •••••••••••••••••••••••• 90,91,88
PARAMLIB ••••••••••••••••••••••• 90,93,94
SVCLIB •••••••••••••••••••••• 90,91,88,35

LINK •••••••••••••••••••••••••• 35,11,12,101
List

ECB. •• 27
loaded program ••••••••••••••••• 13,34-36
note ••••••••••••••••••••••••••• 38-42,44

LOAD •••••••••••••••••••••••• 34-37,13,82-84
Loaded program list ••••••••••••••• 13,34-36
Loaded program request block

(LPRB) •• 13 , 14
Loaded request block (LRB) •••••••••••••• 13
Loader

initial program (IPL) (see
Initial Program Loader) ••••••• 82-87,80

Loading •••••••••••••••••••••••••••••• 40-42
Local Time Pseudo Clock (LTPC) •••••••••• 49

Machine-check •••••••••••••••••• 24,17,52-54
interruption (see FLIH) ••••• 24,17,52-54
record•.......•...•.••..•. 53,106

Main storage supervision •••• 11,30,31,14,68
Main storage •.•. '. .• . • • • . • • 11

Dynamic Area •••••••••••••••••••••• 14,31
Fixed Area ••••••••••••••••••••••••••• 11
IBM 2361 Storage ••••••••••••••• 11,12,31
Processor Storage •••••••••••••••••••• 12

Main Storage Hierarchy
Support •••••••••••••••••••• 30,31,14,68,11

Management
data••..•••.....•...•..... 11,15,30
job •••••••••••••••••••••• 12,15,30,51,11
task•...•••.••....•.......... 11,15

Note list ••.•••••••••••••••••••••• 38-42,44
Nucleus ••••••••••••••••••••• 11,82-86,88,89
Nucleus initialization ••••••••• 88,89,82,83
Nucleus Initialization Program

(NIP) (see
Initialization) ••••••• 88-94,81-86,11,12
BLDL Table •••••••••••••••••••••••• 88,93
Boundary Box •••••••••••••••• 88,89,39,31
Communication Vector Table

(CVT) •• 88,89
Dynamic Area •••••••••••••••• 88,89,14,31
Extended SVC Table ••••••••••••• 18,88,91
Free Area Queue Element

(FQE) ••••••••••••••••••••••••••••
Protection Key ••••••••••••••••••••
Resident Access Method

88,90
88,92

(RAM} ••••••••••••••••••••••••• 88,93,35
Resident SVC Routines

(RSVC) •••••••••••••••••••••••••••
Resident Job Queue ••••••••••••••••
SVCLIB, LINKIIB, and LOGREC •••••••
Timer•............•..•....

88,94
88,94
88,90
88,92

Overlay supervision ••••••••••••••• 43-48,72
initialization •••••••••••••••••••• 47,48
(see also Entry and Segment
tables} ••••••••••••••••••••••••••••• 43

Note List •••••••••••••••••••••• 38-42,44
Overlay Modules •••••••••••••••••••••• 39
Overlay Supervision Modules •••••••••• 41
SEGLD. •• 43
SEGWT. •• 43
segment loading •••••••••••••••••••••• 48
termination •••••••••••••••••••••••••• 48
(see also Program Fetch)

Partition (see Area,
processing program)

PCI Fetch •••••••••••.••••••••••• 37,40,42,71
PICA •••••••••••••••••••••••••••••••••••• 26

PIE

(See Program Interruption
Control Area)

(See Program Interruption
Element) •••••••••••••••••••••••••••• 23

POST. • • • • . . • .• 27, 25
Processing program area (see
Area) •• 11

Processor Storage •••••••••••••••••••• 12,31
Program Fetch ••••••••••••••••••••• 37-42,70

Control Record •••••••••••••••••••• 97,82
Control and RLD Record •••••• 99,83,85,86

Index 115

End-of-Extent appendage •••••••••••••• 42
Input/Output Errors •••••••••••••••••• 42
Partitioned Organization

Directory Record •••••••••••••••••• 100
Program Fetch Records •••••••••••••••• 91
RLD Record ••••••••••••••••••••• 86,98,82
Text Record •••••••••••••••••••• 83,85,86

Program FLIH •••••••••••••••••••••• 11,23,24
Program Interruption ••••••••••••••••• 23,24

Program Interruption
Element (PIE) •••••••••••••••• 25,26,23

Program Interruption
Control Area ••••••••••••••••••••••• 23

Program Interruption
Routine •••••••••••••••••••••••••• 23,24

Program request block (PRB)
(see Block) •••••••••••••••• 12,34,88-90,26

PROLOG (see FLIH, P) ••••••••••••••••• 24,11
Pseudo clock ••••••••••••••••••••••••• 49-51
Pseudo disable •••.•.•••••••••••••••••••• 16

Queue
active request block ••••• 12,13,34,35,22
asynchronous exit queue

(AEQ) ••••••••••••••••••••••••••••••• 22
free area •••••••••••••••••••••• 88-90,32
timer••......•.....•••.•••.. 50,51

Queue control block (QCB) (see
Block) •••••••••••••••••••••• 102,103,28,29

Relocation table •••••••••••• 11,85,86,91,92
Request block queue

(see Active request block
queue; Loaded program
list)

Request block (RB) (see Block). 12,20,26,34
Request element (interruption

queue element) ••••••••••••••••••• 20-22,90
RESERVE •••••••••••••••••••••••••••••• 28,25
Resident access method (RAM) ••• 93,94,88,35
Resident job queue (see Queue). 94,95,89,88
Resident type 3 and 4 SVC

routines (see SVC Routines)
Restart (see checkpoint) ••••••••••••• 56-58

SEGLD •••••••••••••••••••••••••••••••• 43,47
Segment table (SEGTAE) ••••••• 43-48,104,105
SEGWT •••••••••••••••••••••••••••••••• 43,41
SER (see System

environment recording)
SET command •••••••••••••••••••••••••• 49-51
Shared direct access device

(shared DASD) ••••••••••••••••••••••• 25,30
Six Hour Pseudo Clock (SHPC) •••••••••••• 49
SLIH

SVC ••••••••••••••••••• 16,18,19,26,35,36
timer ••••••••••••••••••••••••••••• 49-51

SPIE (see Program Interruption
Element PIE) ••••••••••••••••••••• 26,25,24

STAE •••••••••••••••••••••••••••••• 30,26,25
STAE control Block (SCE) ••••••••••••• 26

STIMER. • • • •• • • • • • • • • • • • • •• • • •• • • • • • •• 49-51
subpool. • • 31
Supervision

116

contents •••••••••••••••••••• 14,35,36,34
interruption •••••••••••••••• 14-16,18,63
I/O ••••••••••••••••••••••••••••••• 11,12
main storage •••••••••••••••• 30,31,14,68

overlay ••••••••••••••• 43-48,14,31,38,12
task .•••.•••••••.••••••••••. 25.31,11,64
time ••••••..•••••••••••••••• 49-51,14,73

Supervisor Modules (resident) •••••••• 94-96
svc FLIH •••••••••••••••••••••••••••••••• 16
SVC Interruptions ••••••••••••••••••••••• 18

SVC Entry Procedures ••••••••••••••••• 18
SVC Exiting Procedure •••••••••••••••• 19

Supervisor record (SUR) •••••••••• 111,51,59
Supervisor request block

(SVRB) (see Block) •••••••••••• 12,19,34-36
SVC Routines •••••••••••••••••••••• 16,18,19

Resident Type 3 and 4 SVC
Routines ••••••••••••••••••••••••• 94,22

Supervisor Cal1 Routines ••••••• 16,18,19
Type 1 SVC Routines •••••••••••••••••• 16
TYFe 2 SVC Routines •••••••••••••••••• 16
Type 3 SVC Routines ••••••••••••••••• 16
Type 4 SVC Routines •••••••••••••••••• 16

SVC SLIH ••••••••••••••••••••••••••••• 16,19
SVC Table .•••.••••••••••..••••••••••• 11,18

Extended SVC Table ••••••••••••••••••• 18
SVC transient area •••••••••• 11,16,22,91,92
SVRB. • • • • • • • • •• •• •• • • • • •. • • •• •• •• •• . • • •• 19

SVRB Creation ,
Initialization Subroutine ••••••••••• 19

SYNCH ••.•••••••••••••••••.••••••••..• 34,36
System area ••••••••••••••••••••••• 11,31,89
System environment recording

(SER) ••••••••••••••••••••••••••••••• 52-55
System interruption request
block (SIRB) (see Block) •••••• 12,21,30,34

SYS1.LINKLIB •••••••••••••••••••••• 90,93,88
SYS1.LOGREC ••••••••••••••••••••••• 90,88,55
SYS1.PARMLIB •••••••••••••••••••••• 90,93,94
SYS1.SVCLIB •••••••••••••••••••• 90,92,88,35

Table
communication vector (CVT) ••••• 88-91,28
entry (ENTAB) ••••••••••••••••• 43-48,104
re1ocation •••••••••••••••••• 11,92,86,81
segment (SEGTAB) •••••••••••.••• 43-48,105
svc 11-19

extension •••••••••••••••• 18,91,92,88
Task control

block(s) •••••••••• 11-14,19-22,23,25-30,88
Task management ••••••••••••••••••••••••• 11
Task supervision ••••••••••••••• 25,31,11,64
Task Termination •••••••••••••••••••..•.• 21

abnormal. • • . . . • . • • • . . • • . .. • • .. 30, 21
normal. . . • • . • • 30., 21
(see ABTERM, ABEND)

TESTRAN •••••••••••••••••••••••••• 43,48,101
TIME •••••••••••••••••• ". • • • • •• • •• • •• •• 52-54
Time supervision ••••••••••••••• 52-54,14,13
T/E FLIH ••••••••••••••••••••••• 16,23,50,51
T/E (timer/external)
interruptions ••••••••••••••••• 23,16,52-54

Timer ••••••••.•••••••••••••••••••••••••. 49
Timer Queue........................... 50
Timer Queue Element (TQE) •••••••••••• 50
Timer SLIH ••••••••••••••••••••••••••• 51

Transient Area •••••••••••••••••••••••••• 11
I/O Transient Area ••••••••••••••••••• 11
SVC Transient Area ••••••••••••••••••• 11
Transient Area Refresh
Routine. •.• •• 20,21

TrIMER •••••••••••••••••••••• '. • • • • • • •. 49,51

Twenty-four Hour Pseudo Clock
(T4PC) •.••••••••••••.•••••••••.••••• 49,50

Type 1 hxit ••••••••••.•••••.••.••• 16,19,27

Validity check (see Check) ••••••••••• 17,29

WAIT ••••••••••••••••••••••••••••••••• 24,25
WAIT

Multiple Event ••••••••••••••••••••••• 26
Single Event ••••••••••••••••••••••••• 27

XCTL ••••••••••••••••••••••• 30,31,34,35,101

Index 117

GY28-6612-4

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

READER'S COMMENT FORM

IBM System/360 Operating System: Fixed-Task Supervisor
Program Number 360S-CI-505

GY28-6612-4

Please check or fill in the items below, adding explanations and other comments
in the space provided.

Which of the following terms bes~ describes your job?

J::(Programmer J::(Systems Analyst J::(Customer Engineer
J::(Manager J::(Engineer J::(Systems Engineer
J::(Operator J::(Mathematician J::(Sales Representative
J::(Instructor J::(Student/Trainee J::(Other (explain)

Does your installation subscribe to the SRL Revision Service? J::(Yes J::(No

How did you use this publication?

J::(As an introduction
J::(As a reference manual
J::(As a text (student)
J::(As a text (instructor)
J::(For another purpose (explain)

Did you find the material easy to read and understand? J::(Yes J::(No (explain below)

Did you find the material organized for convenient use? J::(Yes J::(No (explain below)

Specific criticisms (explain below)

Clarifications on pages __ __

Additions on pages

Deletions on pages __ _

Errors on pages __ __

Explanations and other comments:

Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

FOLD

FOLD

GY28-66124

YOUR COMMENTS PLEASE . . .

This manual is one of a series which serves as reference sources
for systems analysts, programmers and operators of IBM sys­
tems. Your answers to the questions on the back of this form,
together with your comments, will help us produce better publi­
cations for your use. Each reply will be carefully reviewed by
the persons responsible for writing and publishing this material.
All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assis­
tance in utilizing your IBM system should be directed to your IBM
representative or to the IBM sales office serving your locality.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.

POSTAGE WILL BE PAID BY

IBM CORPORATION

NEIGHBORHOOD ROAD

KINGSTON. N. Y. 12401

ATTN: PROGRAMMING PUBLICATIONS

. DEPARTMENT 637

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10S04
[U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

FIRST CLASS
PERMIT NO. 116

KINGSTON, N. Y.

FOLD

FOLD

